
Lecture Notes in Artif icial Intelligence 1994
Subseries of Lecture Notes in Computer Science
Edited by J.G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Jürgen Lind

Iterative
Software Engineering
for Multiagent Systems

The MASSIVE Method

1 3

Series Editors

Jaime G. Carbonell,Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbr¨ucken, Germany

Author

Jürgen Lind
iteratec GmbH
Inselkammerstr. 4, 82008 Unterhaching, Germany
E-mail: Juergen.Lind@iteratec.de

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Lind, Jürgen:
Iterative software engineering for multiagent systems : the MASSIVE
method / J¨urgen Lind. - Berlin ; Heidelberg ; NewYork ; Barcelona ;
Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2001
(Lecture notes in computer science ; 1994 : Lecture notes in

artificial intelligence)
ISBN 3-540-42166-1

CR Subject Classification (1998): I.2.11, D.2, I.2, C.2.4, D.1

ISBN 3-540-42166-1 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg NewYork
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN 10782125 06/3142 5 4 3 2 1 0

Foreword

Agent-based techniques are beginning to be used to develop a wide range of
commercial and industrial applications. This take up is occurring because the
agent-based approach offers a natural and powerful means of conceptualis-
ing, designing and building complex, distributed systems. The key conceptual
components from which this new approach to software engineering derives its
power are: (i) the autonomous components (agents) that can achieve their
objectives in flexible ways; (ii) the high-level interactions (e.g., cooperation,
coordination and negotiation) in which these agents can engage; and (iii) the
organisational structures (e.g., teams, coalitions and various forms of hierar-
chy) into which the agents can arrange themselves. When taken together, the
agents represent the application’s basic units of computation, the interactions
represent the inter-connections between these units and the organisational
structures define the way the components relate to one another.

Although the agent-based approach appears to offer a promising new
paradigm for building complex distributed systems, to date, the majority of
the agent-based applications that have been developed have been built by re-
searchers who specialise in agent-based computing. However, if agent-based
computing is to become anything more than a niche technology practised
by the few, then the base of people who can successfully use the approach
needs to be broadened. A crucial step in this broadening endeavour is to
find mechanisms by which professional software engineers can gain access
to the philosophy, the concepts and the methods of agent-based computing
without having to immerse themselves in the research community. Perhaps
the key mechanism for achieving this is to develop methodologies for agent-
oriented software engineering. Such methodologies should assist developers in
the analysis, design and development of their application; particularly, they
should identify the key steps that are involved, the key models that need to
be built at the various steps, and how the different models and stages relate
to one another.

Against this background, this book, The Massive Method: Software En-
gineering for Multiagent Systems, presents one of the first coherent attempts
to develop such a methodology for a broad class of agent-based systems. In
particular, it provides a clear introduction to the key issues in the field of
agent-oriented software engineering and provides a comprehensive overview

VI Foreword

of the state of the art. It then describes and illustrates the application of the
Massive methodology to a number of real-world applications. When taken
together, these components make the book an important contribution to the
fledgling field of agent-oriented software engineering and, as such, essential
reading for both researchers and practitioners alike.

August 2000 Nick Jennings

Contents

Foreword . V

List of Figures .XIV

List of Process Models . XV

1. Introduction . 1

2. Agents, Multiagent Systems and Software Engineering 9
2.1 Intelligent Agents . 9

2.1.1 What’s an Agent, anyway? . 9
2.1.2 Roles . 12
2.1.3 Architectures . 13
2.1.4 Agents, Roles and Architectures . 14

2.2 Systems of Agents . 15
2.2.1 Interaction . 16
2.2.2 The Social Dimension . 17

2.3 Related Fields in Computer Science . 19
2.4 Agent-Oriented Software Engineering . 21

2.4.1 Aspects of Programming Paradigms 21
2.4.2 A Historic Perspective . 28
2.4.3 The Bottom Line . 30
2.4.4 Where Next? . 32

2.5 Summary . 33

3. Basic Concepts in Software Engineering 35
3.1 Cognitive Aspects of Software Engineering 35

3.1.1 Basic Human Information Processing 36
3.1.2 Software Engineering as a General Design Task 38
3.1.3 Designs and Models . 40
3.1.4 A General Model of Engineering . 41
3.1.5 The Basic Engineering Cycle . 43
3.1.6 Basic Skills in Software Engineering 46

3.2 Requirements for Software Engineering Support 50

VIII Contents

3.3 A General Model of Software Engineering 51
3.4 Software Engineering Product Models . 53

3.4.1 A Generic Product Model . 54
3.4.2 Software Blueprints: The Unified Modeling Language . 55

3.5 Software Engineering Process Models . 57
3.5.1 Classical Process Models . 58
3.5.2 Novel Trends in Software Engineering 67
3.5.3 Development Methods for Multiagent Systems 78
3.5.4 Discussion . 91

3.6 Quality Management and Systematic Learning 91
3.6.1 The Quality Improvement Paradigm 92
3.6.2 Experience Factory . 92

3.7 Summary . 95

4. The Conceptual Framework of Massive 97
4.1 The Foundations of Massive . 97
4.2 Knowbbles . 99
4.3 Views . 101

4.3.1 What and Why? . 102
4.3.2 View-Oriented Analysis . 106
4.3.3 A View System for Multiagent Systems 108

4.4 Iterative View Engineering . 114
4.5 Putting It All Together . 117
4.6 Summary . 120

5. Massive Views . 121
5.1 A Brief Introduction to Train Coupling- and Sharing (TCS) . 122
5.2 Environment View . 125

5.2.1 Developers Perspective . 125
5.2.2 Systems Perspective . 129

5.3 Task View . 130
5.3.1 Use Case Analysis . 130
5.3.2 Functional Requirements . 131
5.3.3 Nonfunctional Requirements . 138

5.4 Role View . 138
5.4.1 Role Definition . 139
5.4.2 Role Assignment . 144

5.5 Interaction View . 144
5.5.1 Intent Layer . 145
5.5.2 Protocol Layer . 148
5.5.3 Transport Layer . 165

5.6 Society View . 167
5.6.1 Characterization of Social Systems 167
5.6.2 Designing Social Systems . 169

5.7 Architecture View . 174

Contents IX

5.7.1 System Architecture . 175
5.7.2 The Architectural Feature Space 177
5.7.3 Agent Architecture . 184

5.8 System View . 190
5.8.1 User Interface Design . 190
5.8.2 Exception Handling . 194
5.8.3 Performance Engineering . 196
5.8.4 Deployment . 201

5.9 Summary . 203

6. Further Case Studies . 205
6.1 The Teamwork Library . 205

6.1.1 Environment View. 205
6.1.2 Task View . 206
6.1.3 Role View . 208
6.1.4 Interaction View . 210
6.1.5 Society View . 214
6.1.6 Architecture View . 214
6.1.7 System View . 217

6.2 Personal Travel Assistant: Intermodal Route Planning 219
6.2.1 Environment View. 220
6.2.2 Task View . 222
6.2.3 Role View . 226
6.2.4 Interaction View . 228
6.2.5 Society View . 231
6.2.6 Architecture View . 231
6.2.7 System View . 234

6.3 Summary . 241

7. Conclusion . 243

A. Toolkits for Agent-Based Applications . 247
A.1 SIF . 247
A.2 ZEUS . 251
A.3 Swarm . 253
A.4 Summary . 254

B. Basic Problem Solving Capabilities of TCS Agents 255
B.1 Planing Algorithm for a Single Task . 255
B.2 Plan Integration Operator . 256
B.3 Decision Functions . 259
B.4 Plan Execution Simulation . 259

C. Protoz Specification of the Contract-Net Protocol 261

X Contents

Bibliography . 265

Glossary . 281

Index . 283

List of Figures

2.1 Perceive-Reason-Act Cycle . 10
2.2 A Single Agent . 10
2.3 A Container Stock Area . 11
2.4 Agents and Roles . 14
2.5 A Generic Agent Application Architecture . 15
2.6 Sociogram . 18
2.7 MAS-Related fields in Computer Science . 20
2.8 Levels of Abstraction . 22
2.9 Programming Concepts . 29

3.1 Memory Model . 37
3.2 Representations . 40
3.3 Design and Model . 40
3.4 Cognitive model of Software Engineering . 41
3.5 The Basic Engineering Cycle . 45
3.6 General Design Tree . 46
3.7 Design Trees as Projections . 47
3.8 A General Model of Software Engineering . 52
3.9 The Structure of an Ideal Development Method 52
3.10 A Generic Product Model . 55
3.11 The Ideal Software Development Process . 57
3.12 Waterfall Model . 59
3.13 Iterative Enhancement . 60
3.14 Product-States . 61
3.15 The V-Model . 62
3.16 The Cleanroom Model . 63
3.17 Classes of Prototypes . 65
3.18 The Spiral Model . 67
3.19 Round-trip Engineering . 68
3.20 The DSDM Method . 70
3.21 Booch’s Macro Process . 71
3.22 Booch’s Micro Process . 72
3.23 Cost-of-Change Curves . 73
3.24 The Generic DESIRE Agent Architecture . 84
3.25 Hierarchical Set of Models . 86

XII List of Figures

3.26 Model Relations in Gaia . 89
3.27 The Quality Improvement Paradigm . 93
3.28 The Experience Factory . 94

4.1 Balanced Approach . 98
4.2 Connections between Design and Implementation 100
4.3 Knowbble refinement . 101
4.4 A Generic View System . 102
4.5 Aspect Weaver . 103
4.6 Views . 104
4.7 Knowbbles and Views . 105
4.8 Shared Knowbbles and Knowbble Refinement 106
4.9 Example for a Generic View Analysis . 107
4.10 Coverage of MAS Models . 108
4.11 Massive Views . 110
4.12 A View System Tree . 113
4.13 Models of Iteration . 114
4.14 Micro Processes . 115
4.15 Iterative View engineering . 116
4.16 The Massive Method . 117
4.17 The Massive Method (UML) . 118

5.1 Views and Multiagent Systems . 122
5.2 Hierarchical freight haulage . 123
5.3 Train Coupling and Sharing (TCS) . 124
5.4 Perspectives on the Environment . 125
5.5 Use case example from the TCS domain . 131
5.6 Example for a Task Tree . 133
5.7 TCS Simulator Workflow (UML) . 134
5.8 Example railroad network . 135
5.9 Task Tree of the TCS Domain . 136
5.10 Hybrid Role Identification . 140
5.11 Layers of Abstraction in Interaction Design . 145
5.12 Task Decomposition . 145
5.13 Centralized Market . 146
5.14 Distributed Market . 147
5.15 Structural Elements of UML Activity Diagrams 151
5.16 Synchronization Point . 152
5.17 Extended Activity Diagram . 153
5.18 Defining Macros . 154
5.19 English Auction . 155
5.20 Contract-Net Protocol . 157
5.21 Contract-Net Protocol (UML) . 158
5.22 Simulated Trading . 159
5.23 Simulated Trading (UML) . 160

List of Figures XIII

5.24 Contract-Net Manager . 164
5.25 Contract-Net Bidder . 164
5.26 Information Exchange . 166
5.27 Generic Blackboard Architecture . 166
5.28 Example for a hierarchical society . 168
5.29 Social System Performance . 170
5.30 Clustering . 172
5.31 Generic Software Architectures . 175
5.32 Architectural Design Space . 178
5.33 System Architecture . 179
5.34 System Architecture (UML) . 179
5.35 Message Passing in TCS/MAS . 181
5.36 Message Passing in TCS/MAS . 182
5.37 InteRRaP . 187
5.38 Union Agents . 188
5.39 Union Agents (UML) . 189
5.40 Elements of the TCS/MAS GUI . 193
5.41 The Performance Engineering Process . 196
5.42 The Performance Improvement Cycle . 196
5.43 Deployment Life cycle . 201
5.44 The Massive View System . 204

6.1 Team Meeting . 211
6.2 Broadcast Protocol . 213
6.3 Team Structure . 214
6.4 Teamwork Agent Architecture . 216
6.5 Broadcast Statistic Tool . 218
6.6 IMRP Example . 221
6.7 IMRP Broker Architecture . 229
6.8 Distributed IMRP Architecture . 229
6.9 Basic Society Structure . 231
6.10 Hierarchical IMRP Organization . 232
6.11 MECCA Agent Architecture . 234
6.12 IMRP Graphical User Interface . 234
6.13 Generic Selection Function. 237
6.14 Example 1 . 239
6.15 Example 2 . 239
6.16 Example 3 . 240

7.1 MADS View System Selection Process . 245
7.2 MADS Supported View Construction . 245

A.1 The EMS Idea . 248
A.2 The EMS Model . 248
A.3 Conceptual Agent Model of SIF . 249

XIV List of Figures

A.4 Information and Control Flow in SIF . 249
A.5 SIF User Interaction . 250
A.6 ZEUS Agent Architecture . 251
A.7 ZEUS Screen shot . 252
A.8 Swarm Hierarchy . 253

B.1 Time Window Propagation . 256
B.2 Planer (UML) . 256
B.3 Action Scheduling . 258

Our ability to imagine complex applications will always exceed our
ability to develop them.

Grady Booch

List of Process Models

1 The Basic Engineering Cycle (BEC) . 44
2 Cleanroom . 64
3 Burmeister . 81
4 Kinny and Georgeff . 82
5 DESIRE . 84
6 MAS-CommonKADS . 88
7 Gaia . 90
8 Quality Improvement Paradigm . 93
9 View-oriented Analysis . 107
10 Massive . 119
11 Use Case Analysis . 131
12 Massive Role Modeling . 141
13 Protoz Protocol Design . 163
14 Massive Society Design . 171
15 Massive User Interface Design . 192
16 Performance Engineering . 197
17 System Deployment . 203

Our ability to imagine complex applications will always exceed our
ability to develop them.

Grady Booch

1. Introduction

Although agents and agent-based computing have been an active research
area for many years, it is only until now that these topics begin to gain in-
dustrial relevance: agent technology is beeing recognized as a powerful tool for
the development of large and complex systems. These days, typical software
architectures contain many dynamically interacting components, each with
their own thread of control and engage in complex coordination protocols
[Ciancarini and Wooldridge, 2000]. Therefore, a new programming metaphor
that captures these systems is needed. Although the basic structural elements
of the agent-based approach as well as their connections are not yet fully un-
derstood, it nonetheless seems to be a promising means for dealing with these
highly complex systems.
However, although the agent-oriented view is likely to become a major

tool to describe complex software systems, development methods, i.e. meth-
ods that provide guidelines how to build actual agent-based applications or
multiagent systems, are still in their infancy and must be more advanced in
order to establish the technology in an industrial context. [Parunak, 1999b],
for example, claims that “Relatively less attention has been paid to the im-
portant question of the process that designers go through. Industrial users
will use agents more readily if basic principles and guidelines are available
. . . ”. The strong need for agent and agent systems development methods in
industry is exemplified by the major European telecommunication compa-
nies that have launched a joint research project to foster the definition of
a development method for agent applications [EURESCOM, 1999]. Further-
more, the engineering topic of agents and multiagent systems is not only a
technical matter that has been picked up by industry, it is also an interest-
ing research field that can provide new methods and techniques for a better
understanding and modeling of highly complex systems [Wooldridge, 1997],
[Jennings et al., 1998], [Jennings, 1999].
It has long been recognized in the Software Engineering community that

a software development method for a particular application domain must
be tailored towards the characteristic needs of this domain [Basili, 1989],
[Basili et al., 1994] as there is no “silver bullet” [Brooks, 1986], i.e. a method
that can be used for all types of problems. To illustrate the idea, consider
the following scenario from the home improvement domain: any of us has at

J. Lind: The MASSIVE Method, LNAI 1994, pp. 1-7, 2001.
 Springer-Verlag Berlin Heidelberg 2001

2 1. Introduction

one time or another used a screwdriver to drill a hole – either because there
was no other tool available or, more likely, because we were to lazy to get a
drill machine. However, whereas using a screwdriver will work for materials
such as wood, it is likely to fail for, e.g. concrete. Even worse, the outcome
of the process with an inadequate tool will normally be worse then using the
better tool right away. Hence, returning to the topic of this volume, what
we need is a software development method that is specifically designed for
multiagent applications in order to achieve the best possible outcome of a
software project using this technology.
It is the goal of this volume to provide such a development method that al-

lows for a better understanding and modeling of multiagent systems and that
is a step towards industrial needs for clearly specified product and process
models that can be readily used by software engineers. Software Engineering
methods, however, are often a very individual matter that vary greatly over
people, organizations and projects. Hence, this book is not trying to define
the silver bullet for multiagent applications (as this is likely not to exists as
stated above) but it is rather a collection of practices that have shown to be
working in real software development projects and from which the readers
can choose those that fit their personal needs and requirements.
Probably the hardest problem in designing a development method for

multiagent systems is to define its scope. Neither should it be too specific in
that it covers only a small fraction of multiagent applications, nor should
it be too general because unrelated details make the method less useful in
the specific context. Although there is no generally agreed definition for the
term “multiagent system” the different characterizations that have been
proposed, e.g. [Gasser, 1995], [O’Hare and Jennings, 1996] [Goodwin, 1993],
[Fulbright and Stephens, 1994] [Franklin and Graesser, 1997] and
[Wooldridge and Jennings, 1998] share the basic ideas and assumptions. The
smallest common denominator is that multiagent systems are systems with a
variable number of interacting, autonomous entities that communicate with
each other using flexible, complex protocols. The agents within a multiagent
system usually have complex individual components and act concurrently
in a distributed environment. This characterization of the term “multiagent
system” suggests that applications that are built on this concept are far
from being easy to design. More specifically, multiagent systems are usually
complex, decentralized systems that are often ill-structured but on the
other hand have the desirable properties of being modular and changeable
[Parunak, 1999b]. Thus we want a general software development method
that supports the development of systems with these specific properties.
According to [Booch, 1996], a software development method encompasses

a notation, whose purpose is to provide a common means of expressing strate-
gic and tactical decisions, ultimately manifesting themselves in a variety of
artifacts and a process, responsible for specifying how and when certain ar-
tifacts should be produced. The notation serves as the language for commu-

1. Introduction 3

nicating decisions that are not obvious or cannot be inferred from the code
itself. It provides rich enough semantics sufficient to capture all important
strategic and tactical decisions and it offers a concrete form for humans to
reason about decisions. Besides this general characterization, an ideal devel-
opment method should exhibit some additional properties such that it can
be used for a broad range of multiagent application projects. Now, what does
this mean?
First, the method should not be committed to a particular technology,

e.g. to a specific platform, agent technology or agent architecture such as
BDI agents [Rao and Georgeff, 1995] or to a certain software development
process model. Also, it should be possible to adapt the method to the partic-
ular needs of the organization that is using it and to the specific project in
which it is applied. Thus, it should be possible to selectively pick parts of the
method that are considered useful in a particular situation without having to
use potentially unnecessary parts as well. This kind of modularity is probably
one of the most important features of a method that can be widely accepted.
Furthermore, the method should be simple in that it is straightforward to use
and does not require extensive training for the user of the method. The sim-
pler it is, the better it will be accepted in the multiagent systems community.
A good means to achieve this goal is to provide a set of core ideas that can
be used directly and to reserve more complicated features of the method to
the experienced user. However, there is a thin border line between “simple”
and “trivial” and thus it must be the goal to make the method “as simple as
possible, but not simpler” (Albert Einstein).
Another important property is that the method must be applicable in

a wide variety of development environments. For example, it should not be
limited to a particular programming paradigm (e.g. object-oriented program-
ming) or even a particular programming language (e.g. Java). Instead, the
method must allow the user to maintain his or her development environ-
ment as far as possible and it must be changeable according to specific user
requirements.
Furthermore, the method should be scalable in order to be applicable to

development problems of almost any size, ranging from small, single person
projects up to large, industrial projects. An important aspect that must be
considered in the development of a design method is that it should enable
the designer or – even better – the organization as a whole to represent and
preserve any kind of knowledge that was obtained during the project exe-
cution and to transfer this knowledge over project boundaries in order to
support knowledge reuse. An overemphasis on originality can easily lead to
the re-invention of the wheel and this is likely to repeat mistakes that were
already made by other designers and could be avoided [Parnas, 1996]. Ideally,
the institutional framework that is needed to establish such a project frame-
work should be small and allow the organization to introduce the scheme
with as few impact on the ongoing business processes as possible. The last

4 1. Introduction

requirement, finally, is that the design method for multiagent system should
be clearly related to existing Software Engineering approaches. Thus, we do
not want a method that operates in “free space” without making use of the
benefits of software engineering research. Instead, we want a method that
operates within a standard software engineering context.
The approach presented in this book has evolved over several years

and it has been successfully applied and refined in different types of
multiagent systems: The multiagent solution for the Train Coupling- and
Sharing (TCS) approach [Voges and Mierau, 1997], [Lind and Fischer, 1998],
[Lind and Böcker, 1999], [Lind et al., 1999b], [Lind et al., 1999a] is a system
for scheduling and cost optimization of a large number of railroad trans-
portation tasks using novel railroad technologies. The re-organization of the
traditional freight transport would require some major investments by the
railroad companies and thus the potential of this idea must be carefully in-
vestigated in a simulation. The TCS project was funded by the Deutsche
Bahn AG in order to evaluate the potential savings that could result from
the novel approach. Multiagent systems are particularly well suited for the
transportation domain because of its inherent complexity and natural degree
of distribution [Fischer et al., 1993] and there is active research in this area
[Fischer et al., 1994], [Fischer and Müller, 1995], [Kuhn et al., 1994].
The Teamwork Library [Denzinger, 1994], [Lind, 1996a],

[Denzinger and Lind, 1996] is a framework for distributed search that
was originally developed for equational theorem proving but that was also
used in other application fields [Kögl, 1995], [Leopold, 1995].
The MoTiV/PTA project was initiated by the Bavarian local govern-

ment as part of Bayerninfo [Bayrische Landesregierung, 1996] and is con-
cerned with the design of a Personal Trip Assitant (PTA) for individ-
ual travelers. One of the services required in the PTA domain is inter-
modal route planning for which a multiagent solution has been implemented
[Siemens AG, 1997] according to the FIPA [FIPA, 1997] [FIPA, 1998] stan-
dards.
In the course of this book, I will frequently use the TCS project to illus-

trate the proposed method and how it is applied in a real-world application;
the other projects are reviewed in an separate chapter at the end of the book.
This book is organized as follows.

Chapter 2 In this chapter, I will outline the basic characteristics of intelli-
gent agents and multiagent systems (MAS) and their relation to Software
Engineering issues. I will start with an introduction to intelligent agents
from a very general point-of-view and then extend the single-agent case
to systems with several intelligent agents. After the general introduc-
tion, I will then briefly discuss some related research fields and provide
a personal view on various topics of a relatively new research field called
“agent-oriented software engineering”.

1. Introduction 5

Chapter 3 The software development method that is presented in this book
is built upon a number of standard Software Engineering concepts and
combines them effectively into a single, coherent model. In this chapter,
I will introduce these basic concepts and their relationships by starting
with an investigation of a cognitive model of design in general. From this
general model, I will derive some basic skills that are essential for a suc-
cessful software engineer and I will outline some requirements for software
engineering tools and methods that follow from these considerations.
After these general remarks, I shall then introduce a general model of
software engineering and explain the individual parts of this model. The
rest of this chapter is dedicated to an extensive discussion of software
engineering process models.

Chapter 4 The ideas and concepts of Chapter 3 constitute the basis of
general Software Engineering methods which will be refined for the par-
ticular case of multiagent system development in this chapter. To this
end, I will explain how the basic concepts and ideas of the Massive

1

method are derived from them and how the resulting building blocks are
assembled into a coherent method that can be used to develop multiagent
applications.

Chapter 5 The product model ofMassive is the core of the entire method.
It allows the system designer to break the target system down into several
views that concentrate on particular aspects of the system and abstract
away from others. In Chapter 5, we will at first discuss the general na-
ture and the intended scope of a view as well as a number of features
and design patterns that belong to a view. The general considerations
are applied to a case study in order to demonstrate how the theoretical
concepts are used in a practical situation.

Chapter 6 A development method will never be accepted in an industrial
context if it cannot prove its validity in practice. TheMassive method is
not a method that was developed in the laboratory and then transfered to
actual projects. Rather it is derived from projects that were successfully
carried out at the DFKI and elsewhere and that were analyzed after
completion in order to find similarities in the product and process models.
The advantage of this approach is that it provides further case studies
that show how the method works and that demonstrate that the method
can be used for a broad range of multiagent applications.

1 MultiAgent SystemS Iterative View Engineering

6 1. Introduction

Acknowledgments

Writing a book about Software Engineering is tough as I have rarely expe-
rienced the difference between academia and industry more sharply then in
this field of Computer Science. While scientific researchers somtimes try to
solve problems of the ”real world” that do not exist there, industrial software
engineers on the other hand mechanically reject results from academia as
beeing only useful in the ”ivory tower” they have been developed in. There-
fore, I am thankful to all people that have contributed to this book and tried
to help me to bridge this gap.
First of all, I thank the head of the Department for Deduction and Multi-

agent Systems, Jörg Siekmann, for stimulating my interest in Artificial Intel-
ligence and for guiding me through the rough ways of writing this book. His
immense knowledge and experience were a steady source of inspiration and
our fruitful discussions helped my to bring my ideas into the present form.
I am also grateful to Nick Jennings who contributed more to this book

then he may be aware of. Not only that he is one of leading researchers in
the field of multiagent technology but he is also the scientific advisor of the
Multiagent Systems group of the DFKI. Therefore, I often asked myself while
working on particular parts ofMassive how I could present these idea to him
at the next meeting of the scientific advisory board. This helped me greatly
to improve the structure and the quality of this book.
Furthermore, I thank the people at the Multiagent systems research group

of the DFKI: Steve Allen, Thorsten Bohnenberger, Hans-JürgenBürckert,
Alastair Burt, Klaus Fischer, Petra Funk, Andreas Gerber, Christian Gerber,
Christoph Jung, Matthias Klusch, Michael Rovatsos, Christian Russ, Michael
Schillo, Gero Vierke, and Ingo Zinnikus. I also thank the Omegas, the VSE
people and the staff at the AGS for the pleasant working atmosphere during
the last four years. Also from DFKI, Christian Schulte and Ralf Scheidhauer
from the Programming Systems Lab deserve some special acknowledgments
for teaching me the bright sides of Oz. During a short term research fellowship
at BT’s Adastral Park Labs, I had the opportunity to discuss aspects of my
work with the people of the Intelligent Business Systems Research group. Paul
Kearney, Divine Ndumu, Brian Odgers, Simon Thompson, Matt Sullivan and
Paul O’Brien helped my a great deal by pointing out matters that needed
further clarification.
Also, I thank Joachim Hertel from SAP Retail for teaching me a more

practical view onto the software development process and the problems within
an industrial environment. These hints and tips are becoming more and more
useful to me as I am now working as a full-time software architect in an
industrially productive environment at iteratec. I would like to thank all the
people there for broadening my horizon during the past few months.
In the industrial and research projects within the last four years, I worked

with many people from different areas. In the TCS project, these were Jörg
Böckers from the IVE and Bernd Zirkler, Wolfgang Voges and Ulrich Mierau

1. Introduction 7

from the Deutsche Bahn AG. The MoTiV-PTA project was a collaboration
between the DFKI and Siemens AG where I worked with Donald Steiner,
Hartmut Dieterich, Berhard Bauer and Gerd Völksen. The Teamwork library,
finally, was built at the University of Kaiserslautern in collaboration with
Jörg Denzinger and others at the department for Rewriting Systems. I am
also indebted to my friend and colleague Alexander Knecht for the countless
discussions during that time, especially about “agents vs. objects” but also
for the philosophical explorations of the essence of programming.
Finally, I thank my family and my friends for their support throughout

my entire carreer.

2. Agents, Multiagent Systems and Software
Engineering

In this chapter, I will outline the basic characteristics of intelligent agents and
multiagent systems (MAS) and their relation to Software Engineering issues.
I will start with an introduction to intelligent agents and then extend the
single-agent case to systems with several intelligent agents. The basic con-
cepts are still presented from a very general point-of-view and will be refined
in subsequent chapters; the reader already familiar with MAS may safely skip
this chapter and continue with chapter 3; a more thorough introduction to
the field for the unfamiliar reader can be found in [Weiss, 1999]. After the
general introduction, I will then briefly discuss some related research fields
and finally provide a personal view on various topics of the relatively new
research field of “agent-oriented software engineering” [Jennings et al., 1998].

2.1 Intelligent Agents

In this section, I will introduce the basic ideas of intelligent agents at a rather
high level of abstraction. The main aspect of this introduction is its use of
a very general notation scheme for the description of agents in order to be
independent of any particular agent school.

2.1.1 What’s an Agent, anyway?

Answering this question, which was first asked in [Foner, 1993], is far beyond
of the scope of this book as there exist roughly as many definitions of the term
as there exist researchers in the field — or perhaps even more. Therefore, I
will use a notion of agency that is widely accepted because it covers almost
any of the more specific definitions and is therefore not suspicious of being too
much biased. Basically, an agent is a software system that is situated in an
environment and that operates in a continuous Perceive-Reason-Act (PRA)
cycle as depicted in Figure 2.1. Thus, the agent receives some stimulus from
the environment and processes this stimulus with its perceptual apparatus.
Next the agent starts a reasoning process that combines the newly incorpo-
rated information and the agents existing knowledge and goals and this then
determines possible actions of the agent. One of these possible actions is then

J. Lind: The MASSIVE Method, LNAI 1994, pp. 9-33, 2001.
 Springer-Verlag Berlin Heidelberg 2001

10 2. Agents, Multiagent Systems and Software Engineering

Reason

(perceive)
Act
(act)

Perceive

(infer, select)

Environment
Fig. 2.1. Perceive-Reason-Act Cycle

S

A

act

perceive

infer

D

T

select

Agent Fig. 2.2. A Single Agent

selected and executed by the agent. The action activation changes the state of
the environment which in turn generates new perceptions for the next cycle.

This cycle was already introduced in [Genesereth and Nilsson, 1987] and
it is also used in [Russell and Norvig, 1995]. To capture the basic PRA cy-
cle more concisely and formally, we introduce the following notation that
is oriented at the formalism used in [Genesereth and Nilsson, 1987]. One of
the basic assumptions in the above description about agents is that they
are situated in some environment. Let us denote this environment by S as
a set of external states without imposing any constraints on the structure
of the elements in the set. Then, we can describe an agent as a 7-tuple
〈D,T,A, perceive , infer , select , act〉 where D is a database that contains the
agent’s acquired knowledge, a set T of partitions of the environment S which
constitute the possible perceptions of the agent and a set A of possible ac-
tions of the agent. An agent is then defined by the following four functions.
The perceive : S → T function determines how the state of the environment
is perceived by the agent, i.e. it limits the amount of information that is pro-
vided to a partial view on the complete state. The infer : D×T→ D function
is used by the agent to update its internal knowledge base according to the
newly received perceptions. The select : D × T → A function is then used
to determine the best action for the current cycle and the act : A × S → S
function, finally, changes the state of the environment accordingly. In Fig-
ure 2.2, I have depicted an agent that consists of these components and the
information flow between them.

To illustrate the ideas that are captured in this rather simple model,
consider an automated container terminal where a robot has the task to

2.1 Intelligent Agents 11

Container
Shelf

Robot

Truck
Fig. 2.3. A Container Stock
Area

unload incoming containers from trucks and to store them on shelves in the
storage area. Figure 2.3 shows such a facility with several shelves, one robot
and a truck that has just delivered some containers that must be unloaded.

Using the abstract description scheme given above, the scenario is mod-
eled as follows. The environment S of the agent (robot) is a grid world with
labeled objects on grid locations, the possible actions A of the agent are
pick container, drive to location and drop container, the robot’s per-
ception T is the content of the field in front of the robot and the knowledge
base D of the agent, finally, contains the destination of each container that
is delivered by a truck container.

The Perceive-Reason-Act cycle of the agent is started when the perceive
function of the agent determines the presence of newly arrived containers in
front of the robot (assuming that the default waiting position of the robot
is at the container ramp of the terminal). Then, the infer function decides
that the only possible action is to pick up a container which is consequently
scheduled for execution by the select function and finally executed by the act
function of the robot. As a result of this action, the state of the environment
changes (because the robot is now holding a container) and thus the next
PRS cycle is started in which the robot will determine the destination of the
container and bring it into the storage area.

In this example, the problem solving capabilities that are necessary in
the problem domain are directly associated with the agent. This concept,
however, has sometimes shown to be too restrictive and it is becoming more
accepted now that an intermediate concept that de-couples the agent from
its associated problem solving capabilities adds clarity to the modeling pro-
cess [Kendall, 1998a]. This intermediate concept is called a “role” and it is
discussed in the next section.

12 2. Agents, Multiagent Systems and Software Engineering

2.1.2 Roles

What is a role? Unfortunately, this question has no straightforward answer
as there exist several definitions of the “role” concept in the agent research
community that differ mainly in their focus on generic properties.

A very general definition is given in [Sundermeyer, 1993] where a role is
seen as a primary sociological concept that must be operationalized for the
context of agent systems. Thus the question of what is a role cannot be de-
fined in a general fashion but needs the context in which it is to be used.
A more specific definition for a role is presented in [Weiss, 1999] where a
role is “The functional or social part which an agent, embedded in a multi-
agent environment, plays in a (joint) process like problem solving, planning
or learning. . . . ”. [Werner, 1989], on the other hand, limits the concept of a
role to purely cognitive states that are defined by the knowledge, the permis-
sions, the responsibilities and the assessment of the agents current situative
context.

Probably the best idea to work on a broad definition that is still useful
is to start in the field of sociology as suggested in [Sundermeyer, 1993]. In
[Bahrdt, 1994], the major characteristics of a role are given as follows:

• A role is a collection of expectations towards the behavior of the inhibitor
of a particular position that allows the members of the society to predict
the inhibitors behavior and to plan according to their expectations.

• There exist mutual dependencies between roles, some roles can only exist if
other roles do exist as well, for example the role of a “teacher” only makes
sense if the corresponding role of (at least one) “pupil” exists as well.

• A member of a society can play several roles even at the same time. This
property is called role multiplicity and can lead to so-called role conflicts.

A major problem in the field of sociology is the delimitation of roles that
occur within a society. Not every set of coherent behavior can be regarded
as a role, there must exist some special properties that make such a set a
role. In developing agent applications, the system designer is faced with a
similar problem in identifying coherent sets of behaviors that can be grouped
together to form the roles that occur in the problem domain. However, I will
postpone this problem to Section 5.4 where I will discuss my approach to
solving it and instead continue with the more abstract view on agents that
we begun with earlier in this chapter.

Formally speaking, the concept of a role is modeled as an extension of the
agents current knowledge, the possible actions and the perceive, infer , select
and act functions. Thus, agents that can play several roles from a set of roles
R are described by the 7-tuple 〈D∪Dr ,T,A∪Ar , perceive∪perceiver, infer∪
infer r, select ∪ selectr, act ∪ actr〉 with r ∈ R.

To illustrate these ideas, we add a second role of the robot within the
container terminal scenario by extending the original perception function of
the agent by the possibility to receive external commands. The (human) area

2.1 Intelligent Agents 13

operator can now direct the robot to search for a particular container in the
stock and to report the status and position of the container. Thus, we now
have two possible roles for the agent, i.e. “carrier” or “verifier”.

I have already said in the introduction of this chapter that the concepts
that will be discussed operate on a rather high level of abstraction. Now, I will
become slightly more technical and explain how these theoretical concepts can
be mapped into executable machinery.

2.1.3 Architectures

In order to show how the theoretical concepts are actually implemented into
computer hard- and software we need an intermediate layer of abstraction
that is provided by agent architectures. In [Sloman, 1996] an agent architec-
ture is defined “as the portion of a system that provides and manages the
primitive resources of an agent”. This definition, however, is still to general
to be directly applicable and therefore, a two step process is used to bring
the conceptual abstractions down to an actual implementation.

The first level of abstraction is given by cognitive models that refine the
basic abstractions into more specific concepts. One of the most prominent ex-
amples for a cognitive model are BDI architectures [Rao and Georgeff, 1995]
that have gained much attention in the agent community in recent years.
In the BDI theory, an agent is described by its Beliefs that determine the
agents current world knowledge, its Desires that determine the goals of the
agent and finally, the Intentions that are generated from reasoning about the
current beliefs and goals and therewith determine the best possible actions.

But even these more concrete specifications of agents are still difficult to
break down into operational concepts. Therefore, a second level of abstrac-
tion is necessary that describes how the abstract concepts of the first level are
made executable on computer hardware. [Wooldridge, 1997] suggests three
possible means to achieve this goal. The first possibility is functional refine-
ment as it is common in most standard Software Engineering environments,
the second one is direct execution of the specifications which implies power-
ful description languages and runtime environments and the third possibility,
finally, is compilation of the abstract specification into executable code. All
three of this methods are currently used and none of these has proven to be
better then any other.

Because of the huge impact of the decision for a particular agent architec-
ture, Section 5.7.3 will provide the reader with a characterization scheme that
structures the requirements of the problem domain and that supports the de-
cision for or against a particular architecture. In this section, I will therefore
not go into further details but instead discuss the connection between agents,
roles and architectures in the next section.

14 2. Agents, Multiagent Systems and Software Engineering

Domain Part
Agent

Role Role

Perception
Aparatus

Actuator
Control ...

...
Role Interpreter

Architecture

Task

TaskTask Task

Task Task

Task

Fig. 2.4. Agents and Roles

2.1.4 Agents, Roles and Architectures

In the previous sections, I have introduced three fundamental aspects of in-
telligent agents. But how do these concepts relate to each other? Basically,
the relation between agents, roles and architectures can be reduced to the
following equation.

agent = roles + architecture

Thus, an “agent” is an abstract concept that is filled with a particular
content by defining the possible roles of the agent and by providing a runtime
environment that is capable of executing the given role models. In Figure 2.4,
the above relation is interpreted graphically. The concept of an agent encloses
the architecture that contains the perception and actuation subsystem as well
as the role interpreter. The role interpreter links the domain-independent
architecture to the domain specific aspects of the different roles by associating
each role with a particular task tree.

In the example of the container terminal, the hardware of the robot cor-
responds to the agent architecture that implements the runtime environment
for the possible roles. The roles itself are modeled as task trees, e.g. the
“carrier” role has the subtasks of checking for incoming containers, deter-
mining the destination of each container and then taking each container to
the indicated destination.

The above relation between the basic entities in an agent application
has some implications on the development of agent (and later multiagent)
applications because it determines the basic structure of each application in
this class. A possible generic application architecture is depicted in Figure
2.5 where I have shown a conceptual model that consists of three layers. Still,
other generic architectures [Horn and Reinke, 1999] are possible but beyond
the scope of this introduction.

The basic layer is of course the Platform Layer that hosts the target appli-
cation. Figure 2.5 shows the rather simple case where the entire applications
runs on the same hardware platform. In the case of more complicated appli-
cations, it may spread over several platforms and therefore may require an

2.2 Systems of Agents 15

Agent
Management

System

Agent
Architecture

Platform
Layer

Domain
Layer

Fig. 2.5. A Generic Agent Application Architecture

additional layer that provides an abstract interface to the individual plat-
forms. However for the sake of simplicity, I have not included this additional
layer.

The Agent Layer of the generic application architecture contains two ma-
jor elements. The Agent Management System provides the interface between
the agent architecture and the hardware platform and the Agent Architecture
implements the runtime environment for the domain dependent roles of the
agent.

The roles themselves are subject to the Domain Layer that covers the
domain specific aspects. Note the interface between the agent management
system and the domain layer which is necessary whenever the systems func-
tionality is not entirely covered by agents.

In the next section, I will extend the single-agent case and lift the view
one step further onto systems of intelligent agents.

2.2 Systems of Agents

In a multiagent system, several intelligent agents exist within the same envi-
ronment. The term “environment” is hereby used is a very broad sense and
covers physical environments for robotic agents as well as runtime environ-
ments for software agents, virtual reality environments etc. To express the
fact of a shared environment, a system of multiple agents is described by a
set structure {S, 〈D,T,A, perceive, infer , select , act〉i} where S denotes the
environment just like before and each of the different agents that share the
environment has a unique identifier i that distinguishes it from the other
agents.

In [Fulbright and Stephens, 1994], other forms of agent coupling have
been discussed. However, I will limit the focus to this particular form a
coupling via the environment because it is predominant in the multiagent
research community and none of the other forms presented there has gained

16 2. Agents, Multiagent Systems and Software Engineering

general acceptance. The main feature of a system that is comprised of sev-
eral intelligent entities is that a major part of the systems functionality is
not explicitly and globally specified, but that it emerges from the interaction
between these individual entities. Therefore, interaction is the main aspect
of multiagent systems.

2.2.1 Interaction

Coordinated interaction among several autonomous entities is the core con-
cept of multiagent technology. But first of all, what is interaction? To be as
general as possible, let us define the concept as follows.

Definition 2.2.1 (Interaction). Interaction is the mutual adaption of the
behavior of agents while preserving individual constraints.

This very general definition has some interesting properties that need
further clarification. First of all, interaction is not limited to explicit commu-
nication or even more specific to the case of message exchange as, of course,
the predominant means in the multiagent literature. Interaction is defined
as any kind of behavior that is related to other agents [Weiss, 1999]. The
example of an ant hill illustrates the basic idea where the single ant does not
reflect about the existence of other ants but it still adapts its behavior to the
behavior of other ants in a way such that the entire society shows coordinated
interaction. The communication between the ants is carried out by several
means e.g. physical tactile behavior, chemical substances, vision and others.

The second important property of Definition 2.2.1 is the focus on mu-
tual adaption, i.e. the requirement that the participating agents co-ordinate
their behavior. For example, a pedestrian, who jumps out of the way of an
approaching car and the driver of the respective car do not have any kind
of interaction according to our definition. The pedestrian has unilaterally
adapted his behavior in order to avoid a situation that would have yielded a
worse payoff to him then to the driver of the car.

The third major focus of the above definition is the aspect of balancing
between social behavior that is manifested in the mutual adaption and the
self-interest of the agent. Neither egoism nor altruism are the best means to
achieve globally optimal system states, but a good combination of these two
aspects of interaction can yield the best global results [Axelrod, 1984]. It is
therefore important to equip the agents within a multiagent systems with a
mix of self-interest and social consciousness that allows them to value the
performance of the entire society over their individual performance.

Especially the second and third of the above properties of Definition 2.2.1
contain the potential for conflicts within the agent society that must be re-
solved in one way or the other.

Coordination in a (natural or artificial) society is the process of conflict
resolution within the society and can be achieved in a number of ways. The

2.2 Systems of Agents 17

most natural conflict resolution strategy that can be found in a physical
environment is simply to do nothing. The laws of physics clearly define the
outcome of actions that include more than one agent. For example, two robots
that approach the same location will be coordinated by the physical law that
only one of them can occupy the particular location. Thus, either the first
robot to reach the location or the stronger of the two robots will finally
occupy it. Obviously, this is a somewhat artificial example for a coordination
strategy and it far away from being reasonable. Although it is straightforward
and therefore easy to implement, it is usually a better idea to implement
some sort of collision avoidance strategy except for the case when you have
extremely robust robots.

The second conflict resolution strategy uses external mediation to solve
the conflict [Georgeff, 1983], [Cammarata et al., 1983]. Mediation means that
the conflicting parties apply to a third, neutral party that decides what should
be done. The most important prerequisite for this sort of conflict resolution
is the mutual agreement of the agents to obey the decision of the mediator.
The advantage of the mediation solution is that the decision about what
to do is not based on local preferences of the agents but on a more global
view (depending on the knowledge of the mediator). However, this sort of
conflict resolution is often not seen as “real” multiagent technology because
the agents loose some of their autonomy by relying on an external mediator.

The third way of conflict resolution, finally, is negotiation. This approach
is mostly used in multiagent systems and it has shown to be a powerful tool
to solve all kinds of conflict situations. In a conflict resolution process based
on negotiation mechanisms, the agents exchange messages until they have
reached a agreement on how the conflict is settled to their mutual benefit.

Besides its ability to solve conflicts among agents, negotiation mechanisms
are a good means to attack complex optimization problems by simulation a
market situation where the agents negotiate in order to find a solution that
optimizes the local performance of the agents as well as the global perfor-
mance of the entire agent society.

Coordinated interaction is the core concept of multiagent systems and the
most common form of coordinated interaction that is used in multiagent sys-
tems is negotiation. Generic forms of interaction will be discussed in Section
5.5 and so I will not go into further details here. Instead, we will now turn
to structural aspects of an agent society.

2.2.2 The Social Dimension

The social structure of a society determines how the entities within the society
relate to each other. Thus, the major questions that occur in conjunction with
the social structure of an artificial society are clearly related to sociology and
to organizational theory and therefore, I will use some definitions from the
field of sociology [Bahrdt, 1994] to explain the basic ideas of agent societies.

18 2. Agents, Multiagent Systems and Software Engineering

reports to

knowsknows

share resourcescontrols

T D A

T D A

T D A

T D A T D A

T D A
S

Fig. 2.6. Sociogram

Definition 2.2.2 (Structure). A structure is a collection of entities that
are connected in a non-random manner.

This definition prescribes two important properties for an agent society
that is built upon the definition. First, it requires the agents to be able to
perceive existence of other agents, otherwise the term “connected” would
not make sense. Second, it requires that the agents are arranged towards a
particular intention, i.e. any structure must have a purpose. The structural
description of the agent society can serve two purposes. A descriptive society
model is used to model a society that already exists and which should either
be modeled by a multiagent system or that constitutes the organizational
context of the system, whereas a prescriptive society model captures the de-
velopers intention of how the agent society should look like. Regardless of the
purpose of the characterization, however, a sociogram as it is shown in Figure
2.6 can be used to express the structural connections between the agents in
an agent society. Each link in the figure has an associated characterization of
its meaning that describes the nature of the connection between the entities.

However, having a non-random structure alone does not make an agent
society [Gerber, 1997] and thus we must find additional properties that refine
the intuitive concept.

Definition 2.2.3 (Society). A society is a structured set of agents that
agree on a minimal set of acceptable behaviors.

This is a very general definition of the concept that leaves sufficient free-
dom for the system designer to model a wide variety of agent societies. The
term “acceptable behavior”, however, needs some additional clarification. The
definition of what is acceptable behavior can be implemented into the agents
themselves by the agent designer. The agents then do not have a chance to
show non-acceptable behavior. In this case, it is straightforward to achieve
acceptable behavior of all agents within the agent society. Unfortunately, this

2.3 Related Fields in Computer Science 19

method is only applicable in closed agent societies. In an open agent society
such as the Internet, no central definition of acceptable behavior exists. Each
agent may have a different view on the topic and the first difficulty is for
the agents to agree on a common definition. Furthermore, the agent society
must be equipped with punishment mechanisms that can be used against
agents that violate the commonly agreed definition. This case is difficult to
handle and up to now, no satisfactory solution (especially for punishment
mechanisms) has been proposed.

However, having defined the concept of an agent society is still not suffi-
cient. An agent society, just like a structure, does not exist for its own right,
instead it must have a purpose. Hence the next definition.

Definition 2.2.4 (Social System). A social system is a society that im-
plements a closed functional context with respect to a common goal.

This definition adds the teleological component to the agent society in
that it puts the society into a well defined functional context. Thus the agents
within a social system must have a common goal that they pursue as long as
they are part of the society.

It is one of the most difficult parts of the development process to find
the society structure that is suited best for a particular functional specifi-
cation because the quality of the solution is usually determined by several,
sometimes contradicting, aspects. In Section 5.6, I will outline some of this
influential factors and present a micro process model that supports the de-
veloper in finding the best society structure for a given problem.

2.3 Related Fields in Computer Science

In the previous section, I have outlined the basic characteristics of intelligent
agents and multiagent systems. Now, I will briefly render some related re-
search fields as shown Figure 2.7 where the connections between multiagent
applications and applications in other fields of computer science are depicted.

Multiagent applications basically have two roots: distributed systems and
agent-based computing . Distributed systems [Fox, 1981], [Mullender, 1993]
[Tanenbaum, 1988] is the sub-field of computer science that is con-
cerned with the design and implementation of computer applications
where several computers or processors cooperate in some way [Tel, 1994].
Distributed systems are often systems where the participating enti-
ties have little or no autonomy in what they do. The designer spec-
ifies the entire system behavior and the only purpose for the dis-
tribution is usually performance enhancement through the exploitation
of parallelism. Agent-based computing [Shoham, 1993], [Bradshaw, 1997],
[Huhns and Singh, 1998] [Jennings and Wooldridge, 1998], on the other
hand, is concerned with the design and implementation of flexible, au-
tonomous entities [Jennings et al., 1998]. These entities – the agents – are

20 2. Agents, Multiagent Systems and Software Engineering

Social
Simulation
Systems

Artificial
Life

Software Systems

Agent-based
Systems

Multi-agent
System

Distributed
Systems

Ecosystems
Computational

Fig. 2.7. MAS-Related
fields in Computer Sci-
ence

situated in an environment that they perceive with their sensor apparatus and
on which they can act upon using their effectors. The agents are equipped
with reasoning capabilities that allow them to deliberate upon their next
actions in order to fulfill their goals.

Multiagent systems are also related to computational ecosystems
[Kephart et al., 1989], [Parunak et al., 1997] where the designer tries to im-
itate the situation within a natural ecosystem. The entities within such a
system are not necessarily cooperative and they may have strong interdepen-
dencies that can have positive or negative effects. Thus the entities usually
compete for scare resources if it is necessary for them to improve their per-
formance.

There are two other related fields that have only minor connections to mul-
tiagent systems, one is artificial life and the other are social simulation sys-
tems. Research in artificial life [Langton, 1989], [Boden, 1996], [Adami, 1998]
is concerned with the formal basis of life and the mechanisms that produce
lifelike behavior [Franklin, 1997]. These mechanisms are then implemented
in computer programs that synthesize the behaviors and allow for the anal-
ysis of the emergent functionality. Social simulation systems [Heise, 1992],
[Epstein and Axtell, 1996], finally, were introduced by sociologists to sim-
ulate the behavior of large groups of individuals. These systems are useful
because they allow the researcher to abstract away from individual character-
istics of humans and to focus on particular properties of the system. However,
these systems only play a minor role in the field of computer science.

The computer science research fields that have been briefly discussed in
this section are all recognized and accepted research fields in their own right.
However none of them has lead to a similar hype as currently about agents
and agent-based computing. Therefore, we will now investigate the flesh and
bones of agent-oriented software engineering and try to find out whether it
is justified to call it a new programming paradigm at all.

2.4 Agent-Oriented Software Engineering 21

2.4 Agent-Oriented Software Engineering

It was already mentioned in the introduction that agents and multi-agent sys-
tems are currently one of the most interesting research fields in the computer
science community. But is this enough to make agent oriented software engi-
neering (AOSE) a new software paradigm? What makes the idea distinctive
from other approaches? How does it fit in a more general picture of software
engineering?

In this section, I will present my personal viewpoint on agent-oriented
software engineering by relating it to other programming paradigms. Espe-
cially the relation between object-oriented and agent-oriented methods is
particularly interesting because they seem to be closely related. In order to
clarify their relationship, I will describe the levels of abstraction that make
up programming paradigms in general and demonstrate the instantiation of
the general case for object-orientation and agent-orientation in particular.
Furthermore, I will point out what could be the major contributions of the
agent oriented paradigm to software engineering and provide an outlook on
how the new paradigm can change the way we think about software systems.

2.4.1 Aspects of Programming Paradigms

The term “programming paradigm” is extremely fuzzy because it is often
used to capture a set of different software-related aspects under a particular
catch-phrase. These different aspects are often located on different levels of
abstraction and their interrelationships are seldom explicitly formulated. In
this section, I will use the triangle shown in Figure 2.8 to describe the different
levels of abstraction that in my view make up a programming paradigm. The
form a triangle was chosen to express the fact that the number of concepts
(and therewith the complexity) on a particular level of abstraction increases
on higher levels. Furthermore, a layered approach is quite common in com-
puter science theories to clearly separate the concepts on different levels of
abstraction. The main advantage of a layered approach is that no knowl-
edge of lower levels is necessary to understand and to work with higher level
concepts because ideally, each level of abstraction represents a conceptually
closed framework. In reality, unfortunately, the higher level theories are not
only much more complex then lower level ones, but they are often incomplete
[McCarthy, 1979]. Therefore, it often becomes necessary to combine several
higher level theories to obtain a full coverage of the intended part of the world
that should be modeled.

Note furthermore, that the distinctions between the different levels are not
too sharp. Because of the fact that most programming models are assumed to
be essentially equal in their computational power (Church’s thesis), any pro-
gramming model can be implemented in terms of any other model. Thus, it
is possible to write object-oriented software in a purely imperative program-
ming language or to implement a deductive database in an object-oriented

22 2. Agents, Multiagent Systems and Software Engineering

in
cr

ea
si

ng
 c

om
pl

ex
ity

Runtine System

Theory

Hard
ware

Design Language

Programming Language

Fig. 2.8. Levels of Abstraction

framework. In the following sections, I have therefore tried to produce a
break-down of concepts that clearly separates intra-model aspects and that
allows for an inter-model comparison of these concepts. I am well aware that
some concepts can be shifted along the abstraction hierarchy, but I think that
the current assignment to a particular level is adequate.

Hardware. The first level of abstraction encapsulates the architecture that
is implemented in the computer hardware. Today, most computers still
have the von Neumann architecture that was introduced in the late 1940s
[Hennessy and Patterson, 1990]. The architecture consists of a processor that
is subdivided into units for computation and control and a memory store that
holds the instructions and the data of the program.

This architecture is still common in modern computers although it has
been greatly optimized by using techniques such as pipelining, caching or par-
allelism to speed up computation. A recent trend in the hardware community
is to turn away from integrated, large-scale systems and towards networks of
normal personal computers that jointly work on a computationally demand-
ing task. These virtual supercomputers combine the advantage of lower costs
through the use of standard hardware with an extreme scalability that allows
to add more computational resources whenever this is necessary. In one vi-
sion on the future of the Internet [McNealy, 1996], the entire net becomes a
virtual supercomputer that makes individual computational power obsolete.

However, whether sequential, parallel or distributed, from the point of
view of a programming paradigm, all hardware looks the same. There have
been attempts to build hardware architectures that implement a particular
programming paradigm directly into the hardware device, but none of these
attempts has been successful. Therefore, we can safely assume that all pro-
gramming paradigms share the same ground.

2.4 Agent-Oriented Software Engineering 23

Theories. On the next higher level of abstraction, however, things are dif-
ferent. Theories are conceptualizations of a particular computational model
that abstracts away from the characteristics of the hardware. The first the-
ories were aimed at capturing the in-principle capability of a computational
device in order to allow for general statements about what can be automati-
cally computed and what cannot [Turing, 1937]. Turing’s theory, for example,
is a radical mathematical conceptualization of the von Neuman architecture
that enables us to formally analyze all possible programs that can be ex-
ecuted on such an architecture. Other computational theories are intended
as tools to help the programmer to express the ideas of what a program
is supposed to do more naturally. An early computational theory that was
meant as the foundation of a “natural” way of programming is declarative
programming [Kowalski, 1979] but it has been demonstrated by empirical in-
vestigations in cognitive psychology that this claim does not necessarily hold
true [Ormerod, 1990].

Let’s start the comparison of the object-oriented and agent-oriented issues
with the entities that are handled on this level of abstraction. In the object-
oriented world, these entities are the objects. An object can be anything
ranging from a concrete entity from the real world to a conceptual entity that
only exists in the designers head. Each object within the system is associated
with a particular class that determines the objects basic properties. Classes
can be linked with each other in several ways. Probably the best known
relation between two classes is inheritance that models a conceptual extension
of a common base specification. During their lifetime, objects communicate
by sending messages to each other. These messages can be used to request
services from the receiving object such as to provide internal information or
to change the current state. Although there are several additional concepts in
the object-oriented paradigm I will restrict myself to this brief introduction
and refer the reader unfamiliar with object-oriented concepts to the available
literature, e.g. [Booch, 1994]. In summary, the collection of object-oriented
concepts is clear and manageable in size and does not vary greatly in different
object-oriented approaches.

In the agent-oriented universe, on the other hand, we are faced with the
first serious problem as there is no single agreed definition of the entities that
are dealt with. The existing agent theories are more or less built upon one out
of two widely accepted notions of agency [Wooldridge and Jennings, 1995].
In the strong notion of agency, an agent is modeled in terms of mentalistic
notions such as beliefs, desires and intentions. Furthermore, the strong notion
requires that these mental concepts have an explicit representation within the
implementation of the agent. Thus, this notion forces a white-box on the agent.
The weak notion of agency, on the other hand, requires only a black-box view
on the agent in that it defines an agent only in terms of its observable proper-
ties. According to this definition, an agent is anything that exhibits autonomy,
reactivity, pro-activity, social ability [Wooldridge and Jennings, 1995].

24 2. Agents, Multiagent Systems and Software Engineering

In my opinion, these two notions of agency are both too strict. I would
argue for a more pragmatic definition of agency that allows the designer to
decide what should be an agent regardless of a particular implementation
or a minimal degree of external properties. I call this the very weak notion
of agency. To explain why this absence of formal aspects still makes sense,
I have to fall back upon a famous article from the early days of Artificial
Intelligence.

In [McCarthy, 1979], the author argues that it is useful to ascribe mental
qualities such as beliefs, goals, desires, wishes etc. to machines (or computer
programs) whenever it helps us to understand the structure of a machine or a
program or to explain or predict the behavior of the machine or the program.
McCarthy does not impose any constraints such as a minimal required com-
plexity onto the entities that we want to ascribe mental categories or onto
the mental categories that we would like to use. In his view, ascribing mental
qualities is a means of understanding and of communication between humans,
i.e. it is a purely conceptual tool that serves the purpose of expressing existing
knowledge about a particular program or its current state:

“All the [. . .] reasons for ascribing belief’s are epistemological;
i.e. ascribing beliefs is needed to adapt to limitations on our ability to
acquire knowledge, use it for prediction, and establish generalizations
in terms of the elementary structure of the program. Perhaps this
is the general reason for ascribing higher levels of organization to
systems.”

To illustrate why this point of view is reasonable, McCarthy uses the
example of a program that is given in source code form. It is possible to
completely determine the programs behavior by simulating the given code,
i.e. no mental categories are necessary to describe this behavior. Why would
we still want to use mental categories to talk and reason about the program?
In the original paper, McCarthy discusses several reasons for this. In the
following list, I have selected those reasons that seem to be most relevant to
me:

1. The programs state at a particular point in time is usually not directly
observable. Therefore, the observable information is better expressed in
mental categories.

2. A complete simulation may be too slow, but a prediction about the be-
havior on the basis of the ascribed mental qualities may be feasible.

3. Ascribing mental qualities can lead to more general hypothesis about the
programs behavior then a finite number of simulations.

4. The mental categories (e.g. goals) that are ascribed are likely to corre-
spond to the programmers intentions when designing the program. Thus,
the program can be understood and changed more easily.

5. The structure of the program is more easily accessible then in the source
code form.

2.4 Agent-Oriented Software Engineering 25

Especially the fourth point in the above enumeration is extremely impor-
tant for AOSE because the task of understanding existing software becomes
increasingly important in the software industry and is likely to outrange the
development of new software [Balzert, 1998a]. Thus, if it becomes easier to
access the original developers idea (that is eventually manifested in the de-
sign) it becomes easier to understand the design and this leads to higher cost
efficiency in software maintenance.

A more general conclusion from McCarthy’s approach is the idea that
anything can be an agent. This view has been discussed from controversial
points of view [Wooldridge and Jennings, 1995] and it has been argued that
it does not buy us anything whenever the system is so simple that it can be
perfectly understood. I do not agree with this. In my view, the conceptual
integrity that is achieved by viewing every intentional entity – be it as simple
as it may – in the system as an agent leads to a much clearer system design
and it circumvents the problem to decide whether a particular entity is an
agent or not. In my personal experience, this problem can be quite annoying
during the design phase whenever two software designers have different views.

In the above paragraphs, I have identified the basic structural elements
of object-orientation and agent-orientation, respectively. Now I will outline
some of the basic concepts of describing and arranging these elements and
point out some fundamental similarities that can be identified.

As I have already said above, the basic descriptional element is object-
oriented programming is the class. A class definition specifies the class vari-
ables of an object and the methods the object accepts. Classes can be linked
with each other via several forms: one class inherit from another class such
that the new class is an extension of the existing class, instances of two
classes can collaborate with each other by exchanging messages, and finally
they can have a structural connection in that one instance of a class contains
an instance of the class.

These concepts correspond to the agent-oriented world by replacing class
with role, state variable with belief/knowledge and method with message.
Thus a role definition describes the agent’s capabilities, the data that is
needed to produce the desired results and the requests that trigger a partic-
ular service. Besides this fundamental relation, there are many other concep-
tual similarities between object-orientation and agent-orientation that can be
mapped onto each other. Due to the limited space, however, these are briefly
summarized in Table 2.1.

Turning away from the conceptual issues and similarities of the two pro-
gramming approaches, we will now come to more technical aspects of the
runtime environment and discuss the general structure for object-oriented
and agent-oriented systems, respectively.

Runtime System. The runtime system of a particular programming
paradigm provides the environment for the program interpretation and these
environments can be radically different. In the more simple forms, they

26 2. Agents, Multiagent Systems and Software Engineering

Table 2.1. Mapping OOP to AOP

OOP AOP
Structural Elements

abstract class generic role
class domain specific role
class variables knowledge, belief
methods capabilities

Relations
collaboration (uses) negotiation
composition (has) holonic agents
inheritance (is) role multiplicity
instantiation domain-specific role + in-

dividual knowledge
polymorphism service matchmaking

are restricted to administrative tasks such as managing the heap or they
provide slightly more elaborate services such as garbage collection. How-
ever, there also exist very complex runtime environment that provide com-
plete reasoning engines for logic programming [Kowalski, 1979] that are
for example used in declarative programming languages such as Prolog
[Clocksin and Mellish, 1994].

Objects and agents and the various relationships that exist between them
within their respective programming model are conceptual abstractions that
require an implementation such that they can be used by higher levels of
abstraction. In the following paragraphs, I will divide the implementation of
the theoretical concepts into the implementation of the entities themselves
and an implementation of a meta-level that manipulates the basic entities.

In an object-oriented runtime system, the objects are statically repre-
sented by the object architecture. This architecture is usually quite simple as
it only contains the current state of the object and the relation to the objects
class (which determines the operations that can be performed on the object).
An object is usually represented as arbitrary collection of data elements with
associated functions and the granularity of objects is potentially not limited.
However, efficiency issues dictate that not every entity is modeled as an ob-
ject and so in reality this conceptual benefit is slightly weakened. The object
management system is responsible for representing the relations such as inher-
itance between the defined classes and object manipulation such as creating
or destroying objects. Furthermore, the object management system is also
responsible for dynamic aspects such as method selection of polymorphous
objects, exception handling or garbage collection.

In an agent-oriented runtime system, things are distinctly more compli-
cated although similar in their general structure. The basic entities are the
agents that are implemented by their agent architecture as it was introduced
in Section 2.1.4. However, agent architectures are far more complex then the
object architecture, especially because of the dynamic aspects that must be

2.4 Agent-Oriented Software Engineering 27

dealt with. Because of the richness of the agent-oriented world, there exists a
large number of different agent architectures [Müller, 1996a], [Müller, 1998],
[Jung, 1999]. Due to the vast number of approaches, it is impossible to iden-
tify the best or most general architecture. However, the smallest common
denominator seems to be the basic perceive – reason – act cycle discussed
earlier where in each iteration, the agent perceives the state of its environ-
ment, integrates the perception in its knowledge base that is used to derive the
next action which is then executed. This generic cycle is a useful abstraction
as it provides a black-box view on the agent architecture and encapsulates
specific aspects.

The task of the agent management system as the meta-level of an agent
based runtime environment is to provide a “life-space” for the agents, i.e. a
collection of mechanisms that enables the agents to get in contact with each
other. To enable agents of different designers to interact with each other,
it is necessary to standardize the basic services that are provided by agent
management system. One such standard is defined in [FIPA, 1998].

Programming Language. In this level of abstraction, the syntactical
framework for the manipulation of the entities on the runtime level is de-
fined. The programs that are written in a particular programming language
are either directly interpreted by the runtime system or they are compiled
into an intermediate format that is understood by the runtime system or
directly to assembler code.

The syntactical constructs that are provided by the programming lan-
guage should allow the programmer to use the underlying semantic concepts
efficiently and to express the intended functionality of the program elegantly.
For example, it is generally possible to implement a particular conceptual
model with any general purpose language, e.g. it is possible to write object-
oriented programs in C, but in general, it is much easier and more comfortable
for the programmer if the terms of the conceptual framework can be used di-
rectly. Even an integration of several conceptual models into a single high
level programming language can be problematic as is often difficult to find
a good combination of concepts that is not overwhelming for the average
user and then to find a concise syntactical representation for these different
concepts.

I think that object-orientation as well as agent-orientation are such gen-
eral concepts that can be attached to almost any other programming lan-
guage. In the case of object orientation, this approached work for lan-
guages such C, leading to C++ [Stroustrup, 1987], Cobol (ObjectCobol
[Doke and Hardgrave, 1998]), perl [Wall et al., 1996] and numerous other
languages. But not only imperative languages have been enhanced with ob-
jects. The Mozart programming system [Programming Systems Lab, 1999],
for example, provides a very elegant combination of constraint-logic program-
ming with object-oriented concepts.

28 2. Agents, Multiagent Systems and Software Engineering

In the context of agent-oriented software engineering, these trends are
not so clear until now. Currently, there is no – at least to my knowledge –
widely accepted agent-oriented programming language that goes beyond the
experimental state. However, some approaches are designed as an extension of
established languages, e.g. JAMagents [Intelligent Reasoning Systems, 2000]
that combine agent-oriented concepts with Java [Sun Microsystems, 1999].
Design Language. Design languages are further abstractions from a partic-
ular programming language that aim at the conceptual modeling of a system
at a more coarse grained level. Design languages often use graphical notations
that make it easier fro the designer to access the overall system structure.
Probably the currently best known design language is the Unified Modeling
Language (UML) [Booch et al., 1999] discussed in Section 3.4.2 that tries to
integrate several, until then separated design notations under a common hat.
Due to the general nature of the core UML, it is not always suited for all prob-
lem areas, and therefore, extensions that cover special aspect have already
been proposed [France and Rumpe, 1999].

In a more general sense, however, design languages should not necessarily
be constraint to modeling aspects of the system. In my personal view, I
would count general software architecture frameworks or frameworks for a
particular application area to design languages as well. The reason for this
view is, that these frameworks provide their own set of structural abstractions
that represent a “language” on this particular level of abstraction.

In the object oriented community, examples for such frameworks include
Java Beans [Sun Microsystems, 2000] as a means of providing off-the-shelf
components together with flexible interconnection mechanisms between the
basic structural elements or software development environments such as Vi-
sual C++ [Microsoft Corporation, 2000] that focus on a support for the devel-
opment of graphical user interfaces. In the latter case, the structural elements
of the design language are graphical elements that are combined according to
a given grammar that regulates how different elements can be put together.

In the agent-based world – although a relatively new area –, a large num-
ber of different frameworks already exists. This may be due to the fact, that
the increasing complexity can only be dealt with by using adequate tool
support. Examples for agent-based design languages range from source-level
frameworks such as SIF [Schillo et al., 1999] [Lind et al., 2000] and Swarm
[Minar et al., 1996] up to complex and powerful tools such as the ZEUS
toolkit [Nwana et al., 1999] from British Telecom that provides drag-and-
drop mechanisms for putting together multi-agent applications. A more de-
tailed description of these tool-kits is provided in Appendix A.

2.4.2 A Historic Perspective

In this section, I will discuss a few historic aspects in the development of
programming paradigms that can be helpful in understanding why the agent-
oriented approach is a natural successor to the prior development.

2.4 Agent-Oriented Software Engineering 29

Table 2.2. Historic development of programming paradigms

Machine Lan-
guage

Structured
Programming

Object-
Oriented
Programming

Agent-
Oriented
Programming

Structural
Unit

Program Subroutine Object Agent

Relation
to Pre-
vious
level

Bounded unit
of Program

Subroutine
+ persistent
local state

Object
+ indepen-
dent thread
of execution
+ Initiative

objects

agents

resources

functions data Fig. 2.9. Programming Concepts

In [Parunak, 1999a], Table 2.2 is used to capture the historic development
from machine language to agent-oriented programming. In the early days
of programming, a program was thus seem as a monolithic block without
any inherent structure. This view was subsequently changed in that it was
recognized that a program is made up from several smaller structural units,
i.e. subroutines. However, the concept of subroutines alone was not powerful
enough as it emphasized the control flow aspect of programming and neglects
the data that is involved. Consequently, the view changed a second time, this
time grouping data and computation together in a single structural unit called
an “object”. Currently, we are faced with the third change of perspective,
leading away from merely passive objects and facing towards active structural
units which we call “agents”.

I like the above presentation of the historic development because I think
that it captures the main ideas in a concise form. However, I am not com-
pletely satisfied with the characterization of agents in the above table. While
the requirement of an independent thread of execution sounds very technical,
the term “initiative” is to fuzzy to be operationalized.

To draw on the basic ideas of [Parunak, 1999a] but to develop a more
coherent structure, I suggest the three-step characterization shown in Figure
2.9.

In the first step, programs are seen as a collection of functions that estab-
lish a well-defined goal. These functions can be described as an sequence of

30 2. Agents, Multiagent Systems and Software Engineering

statements (imperative programming), as a collection of mathematical expres-
sions that are linked together (functional programming) or as a set of goals
without imposing a particular way of achieving the goal onto the interpreter
(declarative programming).

In the next development step, a program is interpreted in terms of the
data that is manipulated and the functions that operate on that data. This
leads to structured programming where semantically related aspects of the
program are spatially related. An even stronger and explicit relation between
data and functions is introduced by abstract data types, eventually leading
to object-oriented programming.

In the final step of the characterization, the objects are augmented with
resources such as computation time, that can be freely used. This freedom
in the (internal) resource allocation process lead to the concept that I find
most fundamental for agent-oriented programming: autonomy. Although the
weak notion of agency has identified autonomy as a central concept of the
agent-oriented viewpoint, it was only credited as one among others. I would
argue, on the other hand, that autonomy is more fundamental then the other
aspects of the weak notion and that it is even a prerequisite for the others.
For example, pro-activeness can only be achieved when the agent is free to
decide when to become active; the same argument holds for reactivity.

The idea of agents as autonomous agents is so striking and revolutionary
because it leads to a new way of thinking about software systems. Such a
system is no longer a collection of passive objects. Rather, these objects have
a “life of their own”, i.e. they are perceived and modeled by the designer as
active entities. This view on complex systems is completely different from
traditional approaches in that it explicitly accepts the fact that the software
designer is not responsible for specifying the systems dynamics down to the
least bit. Instead, the designer sets out the initial state and specifies the initial
goals of the autonomous agents and then the system takes over. In such a
system, there is no such thing as the “central scrutinizer” [Zappa, 1979] that
controls everything. Rather, the ongoing interactions determine the overall
system behavior.

Another major advantage of the agent-oriented view is that it supports the
principle of locality even better then the object-oriented view does. In object-
oriented systems, the control-flow specification is spread all over the entire
program code. The agent-oriented view introduces a further tool for concep-
tual grouping that comes with the agents well defined bounds [Lander, 1997].
All elements that make up the control-flow of a particular agent are grouped
under the common concept, making it easier to identify larger units of the
program that belong together semantically.

2.4.3 The Bottom Line

After the sobering remarks about the basic similarities of the agent- and
object-oriented approaches one may be tempted to conclude that agent-

2.4 Agent-Oriented Software Engineering 31

orientation are just the emperor’s new clothes. But that is not what I was try-
ing to say. Even if the technical contributions or agent-oriented software engi-
neering are not really revolutionary the conceptual contribution is nonethe-
less huge. Agent-oriented software engineering provides an epistemological
framework for effective communication and reasoning about complex soft-
ware system on the basis of mental qualities. It provides a consistent new
set of terms and relations that adequately capture complex systems and that
support easier and more natural development of these systems.

As an example for the importance of a clear terminological frame-
work, consider abstract data types (ADTs) and objects. It is argued in
[Wirth, 1995], that objects are essentially the same thing then ADTs that
were introduced years earlier. But: why do programmers prefer objects over
ADTs? I think because the terminological framework provided by object-
oriented approaches allows the programmer a more natural way of model-
ing because it allows for thinking in terms of the real world that should be
modeled by a software system. Furthermore, I think that it will be a major
reason for the success of the agent-oriented view that programmers already
use some sort of mentalistic notion to develop their object-oriented systems
that is subsequently translated into object-oriented terms. This additional
transformation can be dropped as soon as the adequate tools for expressing
the ideas directly in the already used terminology become available.

As a second point that I have explained above, I think that adding auton-
omy as an accepted property of formerly passive objects is the main contri-
bution of the agent-oriented view. It leads to a completely different modeling
approach that stimulates a system design built upon the desirable properties
[Conte et al., 1996] of loose coupling between system components with a high
cohesion of these components.

I shall now return to the initial question of the section that was whether
agent-oriented software engineering is really a new programming paradigm or
not. To answer this question, consider the following quote from the Webster
On-line Dictionary [Merriam-Webster, 2000]

Main Entry: par·a·digm
Pronunciation: ’par-&-"dIm also -"dim
Function: noun
Etymology: Late Latin paradigma, from Greek paradeigma, from
paradeiknynai to show side by side
Date: 15th century
1: example, pattern; especially: an outstandingly clear or typical
example or archetype
2: an example of a conjugation or declension showing a word in all
its inflectional forms
3: a philosophical and theoretical framework of a scientific school or
discipline within which theories, laws, and generalizations and the
experiments performed in support of them are formulated

32 2. Agents, Multiagent Systems and Software Engineering

According to this definition, the answer to the above question is clearly
“yes” because agent-oriented software engineering provides us with the re-
quired new framework, built upon the basic property of autonomy, that al-
lows for the modeling and understanding of agent-based applications. Fur-
thermore, I think that the agent oriented view is a necessary prerequisite for
accepting artificial intelligence at all because I think that we must get used
to ascribing basic qualities such as goal, beliefs, desires before we can ascribe
“intelligence” to a machine.

2.4.4 Where Next?

It must be the goal for the agent community to broaden the acceptance of the
new paradigm among the people who really develop software, i.e. software
engineers. But just as it was the case with object-oriented technology, I do not
believe that this acceptance will develop quickly. Object-oriented technology
was around for about 10-15 years before it became a widely accepted and
naturally used software engineering discipline. So the question one may ask in
this respect is why it takes so long for a new paradigm to become state of the
art? An interesting answer to this question is provided in Kuhn’s theory about
the Structure of Scientific Revolutions [Kuhn, 1975]. According to Kuhn’s
theory, scientific development is not a continuous flow, but rather a sequence
of disjoint revolutions. Every such a revolution is preceded by a phase of
normal scientific activities in which the researches use the current state of
the art (the current paradigm) as the general background of their daily work
and the research questions are draw from yet unsolved problems of the current
paradigm and can in principle be solved within the existing framework. From
time to time, however, a question is raised or a phenomenon is observed
that cannot be answered or explained within the current paradigm. These
anomalies require a radical change of perspective, i.e. a new general research
paradigm that can deal with the newly observed phenomena. This is then
called a revolution. Ideally, the new paradigm should also capture the past
experiences although this is not always possible. As an example for this sort
of scientific development, consider Newton’s theory on mechanics. Newton’s
mechanics was the research framework for several hundred years until several
observations on the atomic level could not be explained in Newton’s theory.
This lead to the development of quantum mechanics that were able explain
the observations on the atomic level.

The major point in Kuhn’s theory is, that the new research paradigm is
not introduced into the research by established researchers that “convert”
to the new paradigm. Rather, it is introduced by the upcoming generation
of young researchers that grow up in the spirit of the new paradigm and
that they naturally accept as the general framework. Scientific history is full
of examples for this process. The above mentioned theory of quantum me-
chanics is such an examples, as is Darwin’s theory on the origin of species
[Desmond and Moore, 1994]. On a much more specific level, this observation

2.5 Summary 33

is also true for object-oriented software development. While established re-
searches neglected the novelty in the concepts [Wirth, 1995], it was readily
accepted by the younger generation and it is now a widely accepted program-
ming paradigm.

In the near future of agent-oriented software engineering, however, it is
necessary to make the main contributions accessible to the people that should
use it. Therefore, we need conceptual frameworks such as described in this
book that support the development of agent-oriented applications.

2.5 Summary

In this section, I have outlined the basic ideas of intelligent agents and multi-
agent systems. Starting from a very general formalization of an agent, I have
discussed the concept of different roles and introduced agent architectures
as the runtime environment for role models. The single-agent case was then
lifted to systems with several agents and the fundamental aspects such as
interaction and the social dimension of an artificial society have been dis-
cussed. In the last part of the section, I have presented my personal view
on the idea of agent-oriented software engineering as a general software en-
gineering paradigm.

3. Basic Concepts in Software Engineering

The software development method that is presented in this book is built upon
a number of standard Software Engineering concepts and combines them
effectively into a single, coherent model. In this chapter, I will introduce these
basic concepts and their relationships by starting with an investigation of a
cognitive model of design in general. From this general model, I will derive
some basic skills that are essential for a successful software engineer and I
will outline some requirements for software engineering tools and methods
that follow from these considerations.

After these general remarks, I shall then introduce a general model of
software engineering and explain the individual parts of this model. The rest
of this chapter is dedicated to an extensive discussion of software engineering
process models.

3.1 Cognitive Aspects of Software Engineering

The literature on cognitive aspects of software engineering is sparse. The ex-
isting investigations stem mostly from cognitive science or Human-Computer
interaction research and deal with psychological theories on the nature of
programming. Unfortunately, not much of the available results has been used
by software engineers to understand their very own task or to improve their
tools. Why is this the case?

First, software engineering is often identified with the task of develop-
ing software. However, this is only one side of the medal. Actually, software
engineering is a very general design task [Grenno and Simon, 1988] and the
existing results for these tasks can be applied. Furthermore, software engi-
neering is a very broad subject that is made up from several, sometimes
independent, activities that deal with many different products besides the
code of the respective software system. Figure 3.1 shows a non-exhaustive
list of activities that occur with a software engineering task and that deal
with various (intermediate) products on different levels of abstraction. Be-
fore the interdependencies between these different activities can be structured
into process models, it is necessary to understand these interdependencies on
a cognitive level.

J. Lind: The MASSIVE Method, LNAI 1994, pp. 35-95, 2001.
 Springer-Verlag Berlin Heidelberg 2001

36 3. Basic Concepts in Software Engineering

Table 3.1. Software engineering activities

domain analysis testing extension

code analysis validation code documentation

architecture design reuse user documentation

component design simulation
...

coding refinement

Second, software engineering is often identified with developing software.
However, a major task of todays software engineers is to comprehend either
software that was developed by other team members or existing, third party
software. This topic will become more and more important in the future
because software is used in almost any part of nowadays life and the effort
to maintain this existing software already exceeds the effort to develop new
software [Balzert, 1998b], p.34. Thus, it must be a goal to todays software
engineers to develop tools and techniques that ease the understanding of
newly developed software for future use.

3.1.1 Basic Human Information Processing

The way in which human beings handle data about their environment and
the internal processes that are performed during information processing are
subject of research in cognitive psychology. In this section, I will briefly in-
troduce some concepts and models that are needed later when the cognitive
model of software engineering is presented.

The model of cognitive processes that is assumed in this chapter is based
on the so-called Single-Store model of memory [Spada, 1990]. This model
views the human memory as single, coherent structure that consists of a col-
lection of cognitive units [Anderson, 1983], [Anderson, 1996] that are linked
in network-like manner. The network is organized as hierarchically ordered
levels where the elements of one level are abstractions of the elements on
lower levels. For example, on the lowest level of abstraction, the sensory in-
formation that are associated with a particular item are stored whereas on a
higher level, a symbolic representation for that same item is used.

The Single-Store model distinguishes between two activation levels for
each cognitive unit. The units with a low level of activation are kept in the
long-term memory (LTM) that is used as a passive, permanent knowledge
store with a potentially unlimited capacity. Every cognitive unit can enter
the LTM, but no unit can leave it afterwards. However, some cognitive units
may become irretrievable in the course of time which is commonly referred
to as “forgetting”.

Some of the units in the LTM may have a higher level of activation then
the rest. These cognitive units are said to reside in the short-term memory

3.1 Cognitive Aspects of Software Engineering 37

LTM

STM

Fig. 3.1. Memory Model

(STM) of the individual. The elements of the STM are thus not spatially
separated from the elements of the LTM (as it was assumed in older theories
about the human memory [Shiffrin, 1973]), but rather differ from these only
in their activation level. The major difference between the LTM and the
STM is that the former has an unlimited capacity whereas the latter has
a maximal size of approximately seven items [Miller, 1956]. In Figure 3.1, I
have depicted a network of cognitive units out of which some are activated
in the STM while the others remain passive in the LTM.

Although the LTM has an unlimited capacity, the size of the cognitive
units should be kept at a minimum in order to speed up the retrieval pro-
cess. The major technique for data compression is called chunking where a
chunk is a collection of low level units that belong to the same mental con-
struct. Thus, several simple units are encoded into a single, new item that
is expressed in terms of these simple units and in terms of other chunks
[Blum, 1992]. An example for chunking is that people remember words in-
stead of syllables or letters or even phonetic impressions. However, the latter
are linked to the higher level cognitive unit and can be accessed whenever
necessary. Several studies have shown that chunking is a cognitive capability
that has a large impact on cognitive performance. In one of these studies
[Chase and Simon, 1973], novices and experts were asked to recall chess po-
sitions. While experts performed distinctly better on realistic game positions,
the differences declined on random positions. The explanation for these re-
sults is that experts can compress more information into a single chunk then
novices whenever they can use existing chunks such as sub-configurations on
the chess board [Spada, 1990]. In [McKeithen et al., 1987], a similar exper-
iment is reported where programmers are asked to recall Algol programs.
Again, experts performed much better then novices on real programs but not
on scrambled programs.

I have said before that the human memory is organized as in hierarchical
levels of abstraction. While the representation of knowledge on low levels of
abstraction is accomplished with little abstraction from the pure sensory im-
pressions, knowledge on higher levels of abstraction is represented differently.

38 3. Basic Concepts in Software Engineering

Single cognitive units are represented in so-called schemata where a schema
is a knowledge packet with a rich internal structure [Détienne, 1990]. Each
schema consists of several slots (variables) that can be instantiated with slot
fillers (values). Partially instantiated schemata are prototypes for a partic-
ular concept, fully instantiated schemata are exemplars of this prototype.
These exemplars can be ordered according to their semantic distance to their
common prototype [Spada, 1990].

In the software engineering domain, schemata can be classified according
to three different classes [Détienne, 1990]. The first class are programming
schemata that are either variable plans or control-flow plans. A variable plan,
for example, contains the semantic knowledge about the concept of a counter
variable that is used in loops and a typical control-flow plan is the program-
mers knowledge about the general process of iterating over list of arbitrary
elements. In a real program, the software engineer will need both schemata
(amongst others) to implement a concrete function e.g. to sum up a list of
integer values.

The second class of schemata are application domain schemata that rep-
resent the engineers background knowledge about the application domain. It
is a crucial task in the software engineering process to match the applica-
tion domain knowledge and the programming domain knowledge in order to
develop or to understand a software system for the application domain.

The third class of schemata, finally, are discourse schemata that enable
the software engineer to reason and communicate about programs besides
functional aspects. These schemata include knowledge about general princi-
ples and conventions such as the convention that a variable should reflect its
function or that particular variable names are used for certain tasks (e.g. i
and j are typical variable names for loop variables).

For larger units of knowledge with many different interrelationships,
schemata are not suited because of their rather descriptive nature. A more dy-
namic approach to the representation of large-scale cognitive units aremental
models [Johnson-Laird, 1983]. These mental models contain declarative and
procedural knowledge about a well-defined field and are often individualized
scientific theories, e.g. about electricity [Spada, 1990]. Humans usually main-
tain a wide variety of these mental models and construct new models on
demand, e.g. in the process of understanding the behavior of a complex sys-
tem. The newly created models must be consistent with the existing models
because these are resistant against changes and can only be revised with a
certain learning effort [Spada, 1990].

3.1.2 Software Engineering as a General Design Task

A general design task is the process of arranging a collection of primitive
elements according to a given design language in order to achieve a particular
goal [Grenno and Simon, 1988]. Examples for general design tasks can be
found in technical disciplines such as architectural design or electrical circuit

3.1 Cognitive Aspects of Software Engineering 39

design, but also in cultural areas, e.g. in music composition or in writing
an essay. Thus, design tasks are complex tasks that entail multiple subtasks
that draw on different knowledge domains and a variety of cognitive processes
[Pennington and Grabowski, 1990].

Although these subjects appear to be rather different in their nature, they
nonetheless share two fundamental activities that are exercised during the
overall design process [Pennington and Grabowski, 1990]. The first general
aspect is composition, i.e. the process of developing a design by describing
associations between the structural elements of the design. In terms of a
software engineering process, this step maps what a program should achieve
onto a detailed set of instructions that specify how these requirements are
implemented in a particular programming language.

The second, and equally important aspect, is comprehension. Compre-
hension means to take a particular design and to understand the associations
between its structural elements. The input for this process may be a design
that was produced by a third party, but often it is a design that was devel-
oped by the same person. Now, why should it be necessary for a designer
to understand something that he or she has developed? Simply because it
is almost impossible to anticipate all implicit relations that are introduced
as side-effects of one explicit design decision. For example, creating a new
function for a particular purpose may have the side-effect that other, already
existing functions can be simplified by using the newly created function. For
the software engineer, the process of understanding a design is to map how a
program implements a specification to what this specification entails.

Please note that the software engineering process for a particular software
system can start with any of these two fundamental activities. When devel-
oping a new system, the engineer will start with the composition of an initial
design that is then elaborated in the course of the engineering activities. In
the case of a maintenence task, on the other hand, the software engineer must
first understand the existing software before changing it according to the new
requirements.

The most important property of general design tasks is the evolutionary
nature of the entire process. The design process is not sequential in that it
proceeds from one intermediate product to the next until the design is com-
pleted, Rather, the process involves frequent revisions of previous decisions,
re-structuring of the design elements or exploration of tentative solutions for
particular sub-problems.

Therefore, the design process often starts with constructing a kernel solu-
tion and then incrementally extending this solution until it meets the initial
requirements [Kant and Newell, 1984] [Ratcliffe and Siddiqi, 1985]. In soft-
ware development, the kernel solution is often retrieved by re-using existing
code fragments and the applying a series of repeated modifications to these
fragments until the target system is constructed [Green, 1990].

40 3. Basic Concepts in Software Engineering

Representation 2Representation 1

Fig. 3.2. Representations

State Goal

Design Result

Plan

adjust
Cognitive Level

Object Level

Fig. 3.3. Design and Model

3.1.3 Designs and Models

Before I describe a cognitive model of software engineering activities, I will
outline a fundamental difficulty that is associated with the general task: the
dichtonomy of the object that is worked on.

On one hand, we have a concrete design that is given in some external
representation and that is manipulated by the process, e.g. the code of a
software system, the draft of an essay or a piece of rock used by a sculptor.
In the case of a software system, the design is often given in several external
representations as shown in Figure 3.2. Ideally, these different representations
are semantically isomorphic and differ only in their external form although in
practical situations it is a major problem to keep the different representations
synchronized. For the moment, however, we will not consider this problem
and assume that the external representations are always consistent. We will
return to the synchronization problem is Section 4.4 when we discuss a process
model that deals with this question.

Besides the concrete design, we have the model (or the idea) inside the
designers head that captures the intention of the final result of the design
process as well as the current state of the design. As shown in Figure 3.3, the
designer uses the state model and the goal model to derive a plan to reach the
goal from the current state [Pennington and Grabowski, 1990]. But even if

3.1 Cognitive Aspects of Software Engineering 41

composition/
transformation

Implementation Layer

Intermediate Layer

composition

comprehension

Cognitive Layer

Fig. 3.4. Cognitive model of Software Engineering

we assumed that there is an error-free plan that transforms the current state
into the goal state, the result will not be as expected. Why? Simply because
the designers model of the current state does not correctly reflect the cur-
rent state of the design. Ideally, these two objects should be isomorphic, but
in the real world, there are so many details to consider that a true isomor-
phism will hardly be achieved. Because of this problem, the aforementioned
comprehension process is crucial for the entire design task. It guarantees the
necessary adjustment of the cognitive model in the designers head and the
concrete design that is worked on. The goal of this comprehension process is
to approximate existing mapping between the design and the model as close
to an isomorphism as possible. The better the concrete design is understood,
the better will be the result.

3.1.4 A General Model of Engineering

The cognitive model of software engineering that is presented in this section
consists of three distinct layers as shown in Figure 3.4: the cognitive layer is
the highest level of abstraction and operates on the various knowledge sources
of the individual. The first of these knowledge sources is the background
knowledge that contains general knowledge about computers and compu-
tations and technical aspects such as programming languages or hardware.
Second, the cognitive layer also contains the engineers knowledge about the
application domain for which a new software system is developed or where
an existing system comes from. This knowledge is a crucial factor for the
success or the failure of a software engineering task because it determines the
bounds into which the software engineer can apply his or her technological
abilities. If the problem domain is not sufficiently understood, the results will
seldom match the intentions of the customer. Obviously, it is impossible for
a software engineer to be an expert in any possible application domain and
so the domain knowledge of the software expert develops during the design

42 3. Basic Concepts in Software Engineering

activities. The resulting implicit models must be evaluated against reality by
external supervision of a domain expert in order to detect misconceptions.

Besides these major information sources, the cognitive layer also contains
a mental model [Johnson-Laird, 1983] that has the same functional nature
and structure as the system it models. This mental model is used for the sim-
ulation of processes within the real system and to develop and (pre-)evaluate
hypothesis about the systems behavior.

The information structures within the cognitive layer are usually not rep-
resented explicitely. They are the sum of experiences of the engineer, often
over years, and are thus hard to capture in an explicit form that can be
communicated across individuals.

On the intermediate layer, the system is represented more technically
in terms of the background concepts and the domain knowledge. This
layer can be supported by an external representation although this is of-
ten omitted. If an external representation is used, software engineers tend to
use highly individualized pseudo-languages [Petre and Winder, 1988]. These
pseudo-languages are usually a collage of convenient formal or informal
notations from several fields where each notation is selected on the basis
of suitability for a particular task. The different notations are often par-
tially inconsistent which makes it difficult to develop a general transfor-
mation scheme from the intermediate representation to a particular target
language. This transformation process is therefore usually done manually
[Kernighan and Plauger, 1974].

The intermediate layer is particularly important as it dictates the quality
of the resulting design because it has been shown in [Petre and Winder, 1988]
that the programming language has only a weak influence on the solution.

The lowest layer, finally, is the implementation layer that contains the
code that is understandable by a computer. Obviously, the information on this
layer must be encoded in an external form with a fixed syntactic format. In
the usual software engineering practice, the communication across individuals
takes place on this layer because of the standardized access to the information
structures. The problem of this practice is, however, that information is lost
during the transition from the intermediate to the code layer. Only particular
associations between structural elements are transformed while others are
lost and must be re-built by the receiver. We will return to this aspect in
section 3.2 when we discuss the requirements for software engineering support
systems.

Each of the above layers is subject to resource limitations that restrict
the possible input and output of the process on a particular layer. Examples
for these constraints are cognitive resources [Ormerod, 1990] such as the cog-
nitive capacity which was already introduced in Section 3.1.1 or knowledge
resources e.g. about the application domain or in terms of problem solving
knowledge such as syntactical knowledge about the programming language
or appropriate design patterns. The third form of resource limitations are

3.1 Cognitive Aspects of Software Engineering 43

technical resources which includes the expressive power of the programming
language or tool support on the code level.

The information that is handled in each of these layers is provided as
flexible information structure [Green, 1990] that represent the structural el-
ements as well as their relationships. The most interesting property of the
information structure is the flexibility in which the elements can be arranged.
It is therefore possible to re-arrange the structure of the problem and solution
descriptions according to the structure of the underlying task.

A good means to represent the structural design elements is provided by
schemata as they were introduced in Section 3.1.1. Schemata are the basic
elements for data generation, acquisition and manipulation that can be used
in different ways. In the forward use, existing schemata are instantiated with
problem related information in order to construct a concrete solution from
abstract solution plans. The other form of schema usage is the analytical
backward use where schemata are used to recognize particular aspects of the
system and to either construct new schemata that describe these aspect or
to instantiate existing schemata in the course of program understanding.

To illustrate the different layers that work together in the course of soft-
ware engineering activities, consider the following example. A program for
graphical manipulation of simple objects must be developed in a assembly
language for an embedded system. On the cognitive layer, the engineer deals
with concepts such as lines, squares or circles and their interrelationships.
Assume further, that a particular function of the system requires to compute
the diameter of a circle from the area it covers on the screen. On the cog-
nitive layer, the engineer will combine this (domain) requirement with the
background knowledge about geometric objects and retrieve the matching

formula A = πr2 from memory and rewrite it to r =
√

A
π so that it yields

the desired result. On the intermediate layer, this formula is used directly,
probably by incorporating it into an external representation of the problem
solving attempts of the engineer. In the subsequent transformation process,
the elements of the formula are then broken up into parts that need no further
refinement (e.g. division) and those aspects that are not provided by the un-
derlying programming language and therfore need an explicit implementation
(e.g. the square-root function).

We can already tell from this tiny example, that a lot of information is
lost down along the line from the cognitive layer to the code layer. This gap
widens as system gets bigger and it is the task of a software engineering
support system to minimize the information loss as far as possible.

3.1.5 The Basic Engineering Cycle

A general design task as it was described in Section 3.1.2 is an iterative,
explorative process that usually starts with a fuzzy specification of a complex
goal. A cognitive model for working on these kinds of tasks was presented

44 3. Basic Concepts in Software Engineering

Process Model 1 The Basic Engineering Cycle (BEC)

1. Select
2. Construct
3. Execute
4. Comprehend
5. Evaluate
6. Iterate

in Section 3.1.4 and some issues regarding knowledge sources and knowledge
representation were discussed. In this section, I will combine the introductory
remarks of the previous sections into a generic process model that describes
the general steps in building or in understanding a design.

As shown in Process model 1 and Figure 3.5, the resulting model consist of
six steps: In the first step, the objective of the following iteration is selected.
This can be a concrete entity such as design element that needs further
elaboration but it can also be an abstract property or a functionality of the
system that is to be analyzed for the purpose of understanding the property
or functionality itself as well as its relation to the entire system. Then, either a
solution for the sub-problem or a hypothesis to test the assumptions about the
system is constructed. Note that different solutions for a particular problem
may be tested and compared in subsequent iterations. After that, the solution
is implemented or the test case for the hypothesis is run on the system. Then,
the consequences of the implementation or the results of the test case must be
understood before they can be evaluated according to given quality measures
or test case specifications. After the evaluation is completed, a new iteration
starts. In Figure 3.5, the steps of the process are shown together with the
inherent flow of control and information.

To illustrate the generic process model, consider the task of understanding
an existing program that implements a graphical editor. In the first step, a
typical sub-problem of this task is identified e.g. to understand how a newly
created element is integrated into the internal data model of the editor. Thus,
the question to answer is “Which data stores are used and how is the new
element linked to existing elements?”.

In the second step, an hypothesis is created on the basis of the present
code. The engineer may, for example, select several variables whose names
suggest that these variables are involved in the process, e.g. a variable
elementList would be a good candidate. Then, a test case is developed that
generates a new element that is passed to the system. The major difficulty
in developing test cases in general is to focus on the aspects in question and
to leave the rest of the system untouched. During the test case specification,
the expected results – based on the assumption that the hypothesis holds –
are defined as well.

In the next step, the test case is run and the results are recorded. Run-
ning the test case may become a nontrivial task if the system requires some

3.1 Cognitive Aspects of Software Engineering 45

select

construct

execute

comprehend

evaluate

ModelSystem

control

update

information

Fig. 3.5. The Basic Engineering Cycle

complicated start-up procedure before it is in the state to accept a particular
test input. Especially distributed systems are sometimes difficult to bring to
the desired start state.

The fourth step of the cycle is to understand the changes that occurred
within the program. These changes are retrieved by a before and after analysis
of the relevant aspects of the system. The relevance of particular aspects is
usually given by the hypothesis that was defined earlier.

In the evaluation step, the results are checked for compatability with the
expected results on the hypothesis is accepted of rejected on the basis of
this evaluation process. A third possibility for the result of this evaluation is
that the data is not sufficient to allow for a decision on the validity of the
hypothesis and that additional test case are necessary before a decision can
be made. After these steps have been performed, the process iterates back to
the beginning to start a new cycle.

The basic engineering cycle that has been presented in this section is only
a very general framework for engineering tasks. A concrete instantiation of
the generic model usually depends on a specific application area such as civil
engineering or, in our case, software development. Each of these application
areas has some special skills that are necessary for a successful application of
the basic engineering cycle. In the following section, I will therefore outline
some of the basic skills that are relevant in the software development domain.

46 3. Basic Concepts in Software Engineering

Level 2

Level 1

Level 0

............

Element
Design

Fig. 3.6. General De-
sign Tree

3.1.6 Basic Skills in Software Engineering

In this section, I will give a brief overview over technical skills and possible
development strategies that have been identified as being relevant for the
software development process. The following paragraphs are a loose collection
that I have compiled from several sources and that I think capture the most
relevant skills and strategies for software engineers. Thus, the reader should
be able to recognize some of his or her own habits in this section. In the course
of the section, we will start out with an overview over (generic) development
strategies and then proceed with a list of individual skills that are more or
less necessary for a successful software engineer.

Development strategies capture how individuals proceed with the engi-
neering tasks on a particular subject, i.e. they describe, in terms of the basic
engineering cycle that was presented in the previous section, how the next
sub-problem is selected. In [Wisser and Hoc, 1990], these strategies are ex-
plained at hand of an n-ary tree as shown in Figure 3.6 that describes the
current state of the design at different levels of abstraction.

However, the implicit assumption of this view is, that there exists a unique
starting point of the design process, indicated by the root of the tree. In pre-
vious sections, I have argued that the information about the system that is
used by the engineer is more likely to be represented in a flexible, network-
like structure. This idea is consistent with the wide-spread view that “real
systems have no top” [Sommerville, 1995], i.e. there always exist a large num-
ber of perspectives on the same system. Therefore, I suggest that there are
multiple design trees that are projections of the net with respect to a partic-
ular relationship of the structural elements. Thus, as shown in Figure 3.7, we
may have the refinement-tree that represents e.g. the refinement of system
elements or we may have the uses-tree that describes the functional depen-
dencies between design elements.

The strategies that are discussed in the following paragraphs are used in
two ways: first to select the relation (and therewith the respective design tree)
that needs further expansion and second to select a particular design element
within the design tree that is to be worked on next.

3.1 Cognitive Aspects of Software Engineering 47

F

A

B

D

C

E

F

G

uses refines

A

B C

D

Uses-Tree Refinement-Tree

C

E

G

Fig. 3.7. Design Trees as Projections

In using a top-down strategy, the designer proceeds from the structural
elements on the most abstract level to more concrete elements until finally the
code level is reached. This strategy is very common with imperative models of
computations (and sometimes in later phases of object-oriented approaches)
and it is more or less formally capture in so-called Structured Programming
approaches e.g. [Dahl et al., 1972]. This strategy is usually most appropriate
whenever the designer is familiar with the problem domain and thus knows
in advance what potential difficulties lure on lower levels of abstraction.

A bottom-up strategy, on the other hand, starts with a collection of low
level design elements that are subsequently assembled into bigger units. This
strategy is quite common in functional or declarative models of computations
such as Lisp [Graham, 1995] as well as in early phases of object-oriented pro-
gramming. An advantage of this strategy is that it can be used to detect
implementation problems that can force a re-design on higher levels of ab-
straction to match the requirements of a particular platform.

The top-down and the bottom-up strategy describe how to proceed from
one level of abstraction to the next. These strategies can be combined with
another two strategies that prescribe when to proceed from one level to the
next.

In a breath-first strategy, all design elements on one level of abstraction
are developed before the next level is approached. This strategy is therefore
particularly helpful to deal with interactions among design elements on the
same level of abstraction. However, the problem is that these interactions
can become too complex to be simultaneously considered by the designer

48 3. Basic Concepts in Software Engineering

[Guindon et al., 1987], [Hoc, 1988]. Thus, a pure breath-first strategy is usu-
ally not feasible.

A depth-first strategy, on the other hand, aims at developing components
of one or few branch(es) to their full depth and then going back to the highest
level of abstraction to start with the next branch(es). This strategy is very
good to explore particular aspects of the design in early stages of the design
process and to develop alternative solutions for a particular problem.

The four strategies the have been discussed in the previous paragraphs
are idealized and abstracted. In a real design task, none of these strategies is
applied throughout the full development process. Rather, the developer usu-
ally chooses the best strategy for the next few steps [Wisser and Hoc, 1990].
This behavior is called opportunistic. In such an opportunistic strategy
[Hayes-Roth and Hayes-Roth, 1979], the next sub-task is selected according
to its utility and its cognitive costs [Visser, 1990]. If the information for han-
dling the current design element is not available, the processing is postponed
if the retrieval would be too costly (or impossible, because necessary other
design elements are not even built). In this case, other design elements are ex-
panded because it is “cheaper” then sticking to the plan which would dictate
a context switch. Thus, an opportunistic strategy needs support for flexible
switching between different task. We will return to this aspect in Section
3.2 when we discuss tool support requirements for the software development
process

Besides these development strategies, which obviously influence the over-
all “flavor” of the engineering process, we have some other important skills
that are used by the software engineer. In [Balzert, 1998a], one of the key
capabilities of a successful software engineer is the ability to use abstraction
. Abstraction (sometimes also called modeling) is the process of deriving
the general from the specific while leaving out unnecessary details. An im-
portant abstraction technique is layering , i.e. the process of decomposing
the target problem into several, hierarchically related sub-problems where
the sub-problems on a lower layer are refinements of those on higher lay-
ers. The problem of this technique, however, is to decide when to stop the
decomposition in order not to run into a too detailed analysis.

Another important capability is structuring , i.e. the aptitude to define
the relation between the whole and the parts as well as between the parts
themselves. Structuring is closely related to abstraction in that it tries to find
a reduced representation of a complex system such that the basic character is
revealed. We distinguish between static structuring where the resulting struc-
ture remains fixed over the system lifetime and dynamic structuring where
the structure can change during the system lifetime. A sub-category of struc-
turing is the ability to build hierarchies by ranking, ordering or graduation
of the parts of the system. Also related to this selection of capabilities is
grouping or modularization. Ideally, the system is divided into self-contained
functional groups that can be worked on in isolation whereas in reality, ex-

3.1 Cognitive Aspects of Software Engineering 49

isting dependencies blur the ideal picture and require to model dependen-
cies explicitly. Therefore, the designer must be able to identify and describe
these dependencies in lucidly. Thus, the designer must have extremely good
communicative skills and posses means of verbalization in order to express
thoughts and ideas to bring them to his or her own as well as consciousness
to transport them over boundaries of individuals. Thus, verbalization is very
important for internal reasoning as well as communication between engineers.

Besides this list of quite general capabilities, there are a number of as-
pects that are specific for the software development process. Simulation
[Adelson et al., 1984] , for example, is referred to as the process of men-
tally imitating the system behavior on the basis of the mental model that
is constructed in the design or comprehension process. It can be used to
predict potential interactions between design elements or is can be used in
an opportunistic strategy to select the design elements that need expansion.
Furthermore, simulation can support the comprehension process by using the
mental model of the system to develop the expected results of a particular hy-
pothesis before it is tested on the system. Simulation is also useful to roughly
evaluate tentative solutions for a particular problem prior to implementing it.
This is sometimes a cost-effective way to detect misconceptions before they
are introduced into the system.

Another important aspect of software engineering is the change of perspec-
tive [Adelson et al., 1984], [Visser, 1987]. Thus, the engineer can either take
the perspective of the user for a better understanding of the requirements
or he or she can take the users perspective to develop hypothesis about the
systems external behavior. Furthermore, the engineer can switch to the per-
spective of another software engineer in order to assess the structure and
the comprehensibility of the current design. This can help to improve the
maintainability of the final design.

The last important skill that I want to mention in this non-exhaustive
list is to make use of existing experience and software design re-use. It is em-
pirically validated that any software design is seldom generated from scratch
[Visser, 1987], [Pennington and Grabowski, 1990]. Rather, the designer usu-
ally makes use of existing designs that are adapted to the current require-
ments. These design templates are either retrieved from the designers internal
database, i.e. from memory, or they are take from external sources such as
[Gamma et al., 1994]. Such re-use of working solutions is crucial for develop-
ing a design in always decreasing product life cycles.

In this section, I have briefly outlined some basic cognitive skills that are
relevant for the software developer. The application and development of these
skills can be greatly simplified by the use of adequate tools and methods that
support the software engineer in his or her work. In the next section, I will
therefore sketch some general requirements for such tools or methods.

50 3. Basic Concepts in Software Engineering

3.2 Requirements for Software Engineering Support

In this section, we will discuss some aspects that should be addressed by
software engineering design tools or methods that are constructed according
to the cognitive aspects that were presented in the previous sections.

The first major requirements deals with the presentation of the current
state of the design. The presentation scheme of a tool or method should sup-
port a broad range of perhaps individualized notations. It should allow the
designer to express his or her ideas in the most suitable form without impos-
ing a particular syntactical structure. Experts want a notation scheme that
allows them to express their ideas elegantly [Petre, 1990] and therefore often
use individualizes schemes that were discussed in Section 3.1.4. Obviously,
this requirements has the consequence that automatic tool support is diffi-
cult or even impossible. I will argue later, why the basic idea of individualized
notations is still feasible although it requires some additional start-up effort
from the designer. The second important aspect in conjunction with presen-
tational issues is that a tool or method must support perceptual support for
the contents of the design. For example, useful information should be high-
lighted and the information should be represented in redundant perceptual
and symbolic forms [Curtis, 1989]. The information presentation should also
support revelation, i.e. it should reflect the structure of the solution and per-
haps the process that lead to the current state of the design. To document the
evolution of the design to its current form can especially help an engineer to
understand the design from a third party. Finally, the presentation scheme of
a tool must support grouping mechanisms, i.e. strongly related components
should be kept together. The difficulty with this requirement is that the term
“strongly related” depends on the current focus of the engineer. Therefore,
it is necessary to support dynamic re-ordering of the information structures
according to the change of focus.

The literate programming approach proposed by Donald Knuth
[Knuth, 1992] is a good example for the idea of grouping related aspects to-
gether in order to make them accessible to the programmer. The problem of
literate programming, however, is that the relation between the parts remain
static and thus prevent the programmer from choosing the most adequate
relation for a particular situation.

Presenting information statically, however, is only one side of the medal.
An equally important aspect that requires tool support is the navigation
within the information structure that describes the current state of the de-
sign. Navigation through this information structure should be possible along
various threads such as control flow, logical grouping, refinements etc. The
navigation must be possible across levels of abstractions because expert soft-
ware engineers want the ability to work with high-level constructs on abstract
models as well as the ability to work on a low level such as hardware devices
[Petre, 1990]. The navigation should be supported by additional cognitive
aids that ease, for example, simulation of the systems behavior by providing

3.3 A General Model of Software Engineering 51

mnemonics for variable values or that allow for symbolic execution of the pro-
gram as demonstrated e.g. in [Sneed, 2000]. Finally, the navigation between
different tasks should be backed by mechanisms for the management of the
working memory [Wisser and Hoc, 1990], e.g. in case of an opportunistic re-
finement strategy by keeping a list of postponed sub-tasks.

The third major aspect besides presentation and navigation is changing
the information structure that captures the current design state. Therefore,
the presented information should be editable wherever it is presented, i.e.
there should be no read-only presentations. Furthermore, any changes that
are made to the design should be easily revisable [Curtis, 1989] and a tool or
a method in general should not force premature commitment as it is often
the case with existing development suites or methods [Green, 1990].

The last major requirement for tool or method support, finally, is that the
information structure that is developed in the course of the design process
is accessible on a technical level. Expert software engineers expect to build
their own tools because understanding the difficult mechanisms of a particular
Software Engineering Environment is usually considered to entail more work
then building utilities up from a low level [Petre, 1990]. This easy access to
the information structures then solves the above problem in conjunction with
individualized notation schemes. The software engineer can build his or her
own set of tool that transform the individual notation scheme to a particular
target language and so express the design in an individual notation that is
subsequently transformed into the target language. Although the initial effort
to build the transformation tools is quite high, it quickly pay off because of
the better internal management of the design object.

A good starting point for the development of tools and methods for soft-
ware engineering, is to have a general model of the underlying process. There-
fore, we will now skip our reflections about engineering in general and the
required cognitive capabilities and address ourselves to the peculiarities of
software development by starting with a general model of the software devel-
opment process.

3.3 A General Model of Software Engineering

In Figure 3.8, I have depicted a general architecture for software development
methods: the basic entity that is worked on during software development is
the product as the intended outcome of the process. Typically, such a software
product is constructed according to an abstract description that holds the
general form for a particular class of products. Such a generic description is
called a product model. Since each product model is a generic description of
the parts and their interconnections for an entire class of products, it is quite
natural that we have several generic product models, one for each class of
applications.

52 3. Basic Concepts in Software Engineering

Process

Product
Model

Process
Model

Product

Organization

Organizational Model

Fig. 3.8. A General
Model of Software Engi-
neering

Process Model

configure

construct

Product Model

Institutional Framework

Fig. 3.9. The Structure of an
Ideal Development Method

The instantiation of product model into a product is achieved by apply-
ing a particular process. Again, a concrete process is the instantiation of a
particular process model that is an abstract plan of the software development
activities. As with product models, we have several generic process models
that are either general purpose models that can be used for any type of soft-
ware, or specialized models for particular application classes. The software
development process itself is usually part of a larger organizational structure
that is used to manage the various product and process models as well as
their concrete instantiations. This organizational structure can be built ac-
cording to an organizational model which is again a generic description of the
managemental entities or activities and their relations.

I will use this general model of software engineering activities to structure
the following chapters as well as the ideas that comprise the software devel-
opment method presented in this book. Following the above considerations,
the basic structure of an –in my view– ideal development method is shown

3.4 Software Engineering Product Models 53

in Figure 3.9. It thus provides one or more product models that are used to
describe the design and/or the implementation of a particular system, one
or more process models that guide the developer in constructing the prod-
uct models according to the user requirements and finally an organizational
framework that guides the project management in selecting and supporting
the development process to yield the best possible result.

In the next section, we will start our tour through the various aspects of
the above model by inspecting the properties of generic product models.

3.4 Software Engineering Product Models

Definition 3.4.1 (Product [Balzert, 1998b]). A product is the self-
contained result of a manufacturing process that is intended for a particular
customer.

As I have said before, a product model is a generic description of the parts
that make up a software product as well as their interrelationships. It serves as
a means of communication between the participating parties within a software
project. The resulting product of the software manufacturing process is thus
an instantiation of a particular product model that is created by the process
and the product model can therefore be interpreted as a description of the
goal of the software production process.

Often – but not always – a product model is closely related to a partic-
ular process model. In the V-Model as described in [Rombach, 1994a], the
product model resembles the steps of the process model that is used to con-
struct the final product. The product model of the V-Model consists of six
parts that can be directly mapped to the activities within the V-Model: the
Problem description contains a high level description of the systems intended
behavior that is subsequently refined into the User requirements which hold a
more formal and more detailed specification that it is even more refined into
the Developer requirements. This rather fine grained specification document
serves as the basis for the high-level System design that is extended towards
the Unit design which holds the blueprints for the individual components of
the system. These Executable components are constructed during the coding
phase of the V-Model and assembled to the Executable system that is brought
into production after the validation against the initial specification, leading to
the Production system as the final part of the product model of the V-Model.
Note, however, that the structure of the product model does not determine
the ordering of the steps that are taken to build the parts of the product
model. Although this is the case in V-Model, the same product model can
be used with a different process model that stipulates another sequence of
activities.

54 3. Basic Concepts in Software Engineering

3.4.1 A Generic Product Model

In this section, I will present a generic product model that is independent of a
particular process model. As a starting point for such a generic model, I will
use the following four questions that I think a product model should allow
to be answered: (1) What should be done? (2) Where should it be done? (3)
Who should do it? and (4) How should it be done?

The first question in the above enumeration aims at the system itself and
the requirements that it must fulfill in order to be accepted as a solution for
the problem under consideration. I will not impose any constraints upon the
notation that is used to capture the system requirements to allow the system
developer to chose the most appropriate notation for a particular case. The
system itself, however, is only a part of the problem because no systems runs
independently from its environment. Thus, there as usually a large number
of external interfaces, constraints or prerequisites that must be taken into
account when developing a software system.

Although stated above that the intended product model should be inde-
pendent from a particular process model, it is an unrealistic goal to try to be
completely independent. Therefore, I assume a minimal process model that
consists of an Analysis phase and a subsequent Design phase. This minimal
process model (if one could even call it a process model) is in my view the
absolute minimum beyond simple hacking. An even in the case of hacking
a program directly into the keyboard, I would still argue that the minimal
process model is at least implicitly used by the hacker.

The above list of questions is often split out in a way that the system
requirements and the system environment are usually broken down in the
analysis phase of the software development process whereas the focus of ques-
tions (3) and (4) are the major concern of the design phase. In developing the
system design, the software engineer must lay out the entities (who) that are
involved as well as their interrelationships (what). The entities themselves
can be anything from rather simple data structures, functions or objects up
to complex entities such as agents. The range of relationships between these
entities is equally broad and includes simple method or function invocation
as well as message exchange between remote entities.

The separation of concern that is implied by the above list is shown graph-
ically in Figure 3.10. In the figure, we can clearly see that there is a rather
string relation between the system and its environment that are captured by
the design on the one hand and the “who” and “how” of the implementation
on the other hand. I will return to this separation into design and imple-
mentation in Section 4.2 where I will present the foundation of the Massive

product model in greater detail.
In this section, we have investigated the basic structure of a product

model on a very high level of abstraction. However, the instantiation of a
product model into a specific product can be achieved in many different
ways with each of these ways using their own content language to describe

3.4 Software Engineering Product Models 55

System

Environment

how

whowhere

what

Design Implementation
Fig. 3.10. A Generic
Product Model

the final product. Obviously, this approach has the serious drawback that
developers tend to use the favorite notation schemes, making it difficult –
if not impossible – to communicate with other developers. Especially in the
object-oriented community, the drawback of multiple design languages stim-
ulated the development of a common content language that integrates the
main object-oriented notation schemes.

3.4.2 Software Blueprints: The Unified Modeling Language

A design tool that has recently gained major attraction in the software en-
gineering community is a graphical language to describe the design of soft-
ware systems. The Unified Modeling Language (UML) [Booch et al., 1999],
[Rumbaugh et al., 1999] aims at a global standard for the description of soft-
ware systems comparable to standardized blueprint languages that exist for
electrical, mechanical or civil engineering for several years. The advantage of
such a blueprint language for software systems that is built upon a set of sym-
bols and mechanisms together with a well defined semantics for both of them,
is that it enables software designers to express, exchange and work on their
ideas without complicated translation processes that are necessary nowadays.
Furthermore, a unified language increases the interoperability among software
design tools and allows software developers to become more independent of
particular development environments and thus allow them to assemble cus-
tomized environments out of different tool suites. The UML combines original
ideas with established features of other graphical design languages into a co-
herent framework that allows for the specification of a broad range of design
aspects of a software system. In this book, I will use the UML in the case
studies to describe parts of the system design.

The major goals of the UML as they are discussed in
[Rational Software, 1999a] are to provide a ready-to-use expressive vi-

56 3. Basic Concepts in Software Engineering

sual modeling language that is widely accepted and thus allows the users to
exchange design models without loss of information or excessive work to map
their models onto each other. Furthermore, the UML should be independent
of a particular programming language or development process i.e. the UML
should be able to support all reasonable programming languages as well
as most existing process models. The UML should also provide a formal
basis for understanding the modeling language. The formal semantics of the
language constructs must, however, not be too complicated so that it can
be applied by the average user. UML expresses the operational meaning
of most constructs in precise natural language and thus avoids operational
definitions that are equivalent to implementation specifications. Extensibility
and specialization mechanisms are used in the UML to extend the core
concepts by allowing the users to tailor the UML towards their specific needs
without the need to alter the core definition or re-implement tools. The UML
also supports higher-level development concepts such as design patterns,
components or frameworks to support reuse of models and software and aims
at encouraging the growth of the tool market by stimulating interoperability
between the products of different vendors on the basis of a commonly agreed
format and meaning of modeling constructs. All in all, it is the main goal of
the UML to integrate best practices in industry.

The UML is currently undergoing a standardization process that will not
be finished for several years. However, the basic functionalities seem to have
settled during the past few years and are unlikely to be changed as they are
already used in software development environments of all kinds. The building
blocks that are currently defined in the UML are described below.

Things Things are first-class abstractions in models that are used to de-
scribe structural, behavioral, grouping or annotational entities. Structural
entities are the static parts (either conceptual or physical) of a software
design, e.g. classes, interfaces, collaborations, etc.; behavioral things, on
the other hand, deal with the dynamic parts (i.e. behavior over space
and time) and are described in interaction diagrams or state machines;
groupings are the organizational parts of the software system (e.g. pack-
ages) and comments are used to describe, explain or illuminate facts that
cannot be expressed in the UML itself.

Relationships The task of relationships is to tie things together by mod-
eling their dependencies, i.e. the semantic relation between things where
the change of one thing may affect the semantics of the other thing;
their association, i.e. structural relationships that describe a connection
between things (e.g. aggregation); generalizations that express the sub-
stitutability of a thing (the parent) for another thing (the child) and
realization, i.e. a semantic relationship wherein one classifier specifies a
contract with another classifier that guarantees to carry it out.

Diagrams Diagrams are used to group interesting collections of things. The
diagram types that are defined within the UML are

3.5 Software Engineering Process Models 57

Model SW SystemModeling Construction

Installation

Customer Fig. 3.11. The Ideal Soft-
ware Development Pro-
cess

• Class diagrams for classes, interfaces and collaborations and their re-
lationships,

• Object diagrams for objects and their relationships,
• Use case diagrams for actors and their relationships,
• Sequence diagrams for messages between objects with a focus on the
time-ordering,

• Collaboration diagrams for messages between objects with a focus on
the structural aspects,

• Statechart diagrams for a dynamic, event-oriented view of the system,
• Activity diagrams for emphasizing the control flow among objects,
• Component diagrams for the static implementation view and
• Deployment diagrams for the configuration of the run-time processing
nodes and the components that live on them.

These concepts will not be explained in this work and I refer the reader
to [Booch et al., 1999] for a full introduction to the UML. I will use the UML
in this book to present some of the ideas and the resulting implementation of
the case study at a high level of abstraction. These rather simple diagrams
should be understandable without an intensive knowledge of the UML.

3.5 Software Engineering Process Models

The need for prescriptive plans for the development of software sys-
tems arose as it became clear that the software development process con-
tains numerous difficulties that cannot be solved in an ad-hoc manner
[Naur and Randell, 1969]. In the late sixties software community had slipped
into what was called the “software crisis” and the need for engineering models
that guide the software development process was raised. Since then, a large
number of software engineering models have been proposed.

Ideally, software development as shown in figure 3.11 is achieved in three
steps:

1. The designer develops an abstract model of the aspects of the real world
that should be implemented by the software system.

2. The system is constructed (implemented) according to the model.
3. The operational software system is installed at the customers site.

The products that are generated in the course of this development process
are the design that describes the designers view on the system and its envi-
ronment as well as the designers intention of what the system is supposed to
do and the implementation that realizes the design on a computer platform.

58 3. Basic Concepts in Software Engineering

Unfortunately, things are not always that straight because of various dif-
ficulties that can occur during the development process. Therefore, the de-
signer needs some pre-defined plan of how to execute the activities that are
involved in the software development process and also plans of how to handle
difficulties that arise in the course of these activities. Such a pre-defined plan
is called a process model as defined below.

Definition 3.5.1 (Process Model [Jalote, 1997]).
A Software Engineering process model is a formalization of the software
design and implementation activities and of the products that are connected
with these activities.

A large number of different process models have been proposed since the
need for these prescriptive plans became apparent. I have chosen some of
these models to present them in subsequent sections either because they are
fundamental and widely accepted and used in industrial contexts or because
they are closely related to our development philosophy. Section 3.5.1 cap-
tures the classical process models that have been proposed at the beginning
of the development of software engineering as a distinguished research field
and although some of the models discussed there may appear outdated, the
nonetheless have laid out the ground for the development of more elabo-
rate methods. In Section 3.5.2, I will then discuss some of the most recent
approaches towards software development. Literally all of the methods pre-
sented there have contributed to the software development method for mul-
tiagent systems that is described in this book. In Section 3.5.3, finally, I have
assembled a overview over other software development methods that explic-
itly deal with multiagent systems in order to relate the method presented in
this book to its “competitors”.

3.5.1 Classical Process Models

In this section, I will present some of the most fundamental process models
that have been developed in the early days of Software Engineering. I have
decided to include these classical models because some the basic ideas that
are incorporated in these models are still used – although mostly modified or
hidden – in more recent models.

Waterfall Model. The Waterfall model [Royce, 1970] was initially created
to describe the various stages that occur during the software development
process and it is one of the earliest attempts to formally describe software de-
velopment. The Waterfall model is a document-oriented top-down approach
that models the entire software development process as a sequence of consec-
utive steps where the output of one step serves as the input of the next step.
As depicted in Figure 3.12, the individual steps that are executed during
the software development process are the analysis of the problem domain,
designing the software system that solves the problem, coding the design into

3.5 Software Engineering Process Models 59

Design

Code

Test

Analysis

Installation Fig. 3.12. Waterfall
Model

a particular programming language, testing the code with respect to the re-
quirements and finally installing the system at the user site.

The Waterfall model optimistically assumes that these steps can be exe-
cuted in the given order, i.e. that all documents are complete and no problems
occur that would require to trace back to a previous stage.

Due to its simple, sequential nature, the Waterfall model is easy to un-
derstand and to use, even by unexperienced programmers. Because of the
non-existing interdependencies of the different stages, no complicated co-
ordination among team members is necessary. This might explain why the
Waterfall model is still widely in use in industrial projects of almost any size.

However, the Waterfall model has a number of serious drawbacks that
limit its applicability. First, it is somewhat unrealistic to assume that all
documents are complete and error-free upon the first creation. This assump-
tion is often interpreted as a prescriptive requirement and thus the documents
are not allowed to change once they are completed. This makes it impossible
to correct design decisions that show to be sub-optimal. Second, the model
does not feature any risk analysis that is helpful in order to identify potential
problem areas of the software development process. In a way, this topic is
closely related to the optimistic assumption that everything will go all right.
The third major problem of the Waterfall model is finally, that the user often
tends to see the documentation as more important then the system itself.
Thus the focus of the development team shifts away from their initial goal to
produce a software system to the goal of producing documents that describe
the system.

60 3. Basic Concepts in Software Engineering

...

...

...

Fig. 3.13. Iterative En-
hancement

Due to these limitations and problems of the Waterfall model, it was
replaced by more elaborated process models.

Iterative Enhancement [Basili and Turner, 1975] is a process model that
is similar to the Waterfall Model except for the fact that the Waterfall Model
needs a complete and stable requirements definition while the Iterative En-
hancement model operates in several cycles on a partitioned and incomplete
system model. The incomplete model is iteratively enhanced (hence the name
of the method) in each cycle as shown in Figure 3.13 for a three step process.
The major advantage of this approach is that it takes into account that any
specification is initially incomplete and usually undergoes frequent changes
because of upcoming new information, external factors or simply because
of human errors [Parnas and Clements, 1986]. Although the idea of Iterative
Enhancement is pretty old in terms of computer science research, it is still de-
veloped further and used in software development methods such as described
in Section 3.5.2.

V-Model. The V-Model [Rombach, 1994b], [Dröschel and Wiemers, 1999]
is a direct successor of the Waterfall model and it was designed to fix some
of the most obvious shortcomings of its ancestor. As a major enhancement,
the V-Model adds explicit quality assurance mechanisms to the Waterfall
model: verification is concerned with the correctness of individual products
with respect to their specifications, and validation refers to the correctness of
individual products with respect to the intended use of these products. Thus,
verification and validation introduce explicit feedback loops if some process
stages fail to achieve their goals.

Besides these enhancements, the V-Model provides a more fine-grained
view on the process of software development. The basic idea is to model the
members of a software development team by explicit roles with associated
activities. These activities can generate or change the products that are pro-
duced during the process execution and that have already been mentioned in
Section 3.4.

3.5 Software Engineering Process Models 61

planned processed ready accepted

Fig. 3.14. Product-States

Each of these products has one out of four well-defined states; a product
can either be planned if it does not exist at a particular step, processed
during its construction or refinement, ready if the construction or refine-
ment is completed or accepted when it has passed the quality assurance test
mentioned above.

The possible transitions between product states are shown in Figure 3.14:
when the process enters a state that generates a new product, the state of
this product changes from planned to processed until a first version of
the product is assembled and the product state changes to ready. If the
product succeeds in the following quality assurance test, the state changes to
accepted. If the quality assurance process fails, the product status is reset
to processed and a new iteration is executed.

The possible activities within the V-Model as shown in Figure 3.15 are
development, verification or validation where either of the activities can either
generate a product, change the content of a product or change the state
of a product. The generation and content change of a product are usually
achieved by the development activities whereas the state-change of a product
is associated with either a validation or a verification activity. Each of these
activities is exactly documented according to a predefined scheme.

In the V-Model, roles are used to describe the required experience, knowl-
edge and abilities for particular activities that are associated with a role in-
hibitor. The V-Model differentiates between technical roles and management
roles.

The technical roles are the requirements engineer who is responsible for
the definition of the requirements towards the software system, the system
architect who designs the software architecture of the target system, the de-
signer who is responsible for the design of individual components or entire
sub-systems, the code engineer who transfers the designers specifications into
executable code, the verification engineer who is responsible for the correct-
ness of the code wrt. to the functional specifications, the integration super-
visor who controls the assembly process of components and sub-systems and
finally the validation engineer who assesses the correctness of the system or
parts of the system wrt. to its intended use.

The management roles are the product manager who is responsible for a
single product, the project planer who is responsible for planning the time
lines and resource allocations of the project, the project manager who controls
the project execution and keeps it synchronized with the scheduled activities

62 3. Basic Concepts in Software Engineering

Component
Spezifications

Develop
Konstruieren

Component
Executable

Problem
Description

User
Requirements

System
Design

Operational
System

Final
System

Component
Code

Component
Design

System
Executable

System
Executable

Document
Design

Requirements
Document

Integration

System-Test

Acceptance Test

Validation

Component
Test

Verification

Document
Code

Requirements
Developer

Test

Fig. 3.15. The V-Model

and resource limitations and the quality control manager how is responsible
for the maintenance of the quality standards.

The V-model is a very detailed model that is generic and customizable.
It works well for large projects and is now a required standard for large
industrial projects. It is a mandatory standard for military projects in Ger-
many (and several other countries) and also for many public or government
software projects. However, due to its degree of details, it is not suited for
small or middle size projects because of the high institutional overhead that
proportionally decreases with the project size. Furthermore, the model needs
explicit tool support to handle the co-ordination processes between the vari-
ous roles. Furthermore, the V-Model is not generally method-independent as

3.5 Software Engineering Process Models 63

Software Design/Verification

Software Implementation

Configuration Controlled Software

Software Design/Verification

Software Implementation

Configuration Controlled Software

...

...

...

Software Specification

Increment 1 Increment n

Independent Software Test
Diagnosis & Correction

Fig. 3.16. The Cleanroom Model

it depends on a functional and a data-oriented decomposition of the problem
to be solved [Balzert, 1998a].

Cleanroom. The Cleanroom software development process
model [Mills et al., 1987], [Dyer, 1992], [Poore and Trammell, 1996],
[Linger and Trammell, 1996] was originally designed to support the de-
velopment of almost error-free software by introducing error prevention
instead of error correction in the development process. In most other process
models, one or more test-phase(s) are an integral part of the development
process itself. The Cleanroom method, on the other hand, takes a different
view on the matter of testing. The basic idea is to separate the software
development process from the quality management activities. Thus, not the
designer or the implementor of a piece of software is responsible for the
quality of his or her product, but a completely different authority – the
tester. This forces the designer to put more effort into the planning process of
the products because errors cannot be “tested out” during the development
process. The Cleanroom approach supports this idea by suggesting the use
of formal methods of software design as far as possible. The tester, on the
other hand, has no connection whatsoever to the design process as he or
she is only responsible for maintaining the well defined quality standards
through applying statistical testing methods to the software delivered by
the designer. This separation of the two major activities in the software
development process ensures a higher reliability of the final product and
leads to a higher productivity because of the reduced work.

As shown in Figure 3.16 the Cleanroom process model divides the target
system into several independent increments that can be separately worked
on using an iterative refinement approach. The process model shown in the
figure is summarized in Process Model 2.

In the requirements specification phase, the basic increments of the final
software system are identified and the requirements towards each of these
increments are defined. The specification should use formal method as far as

64 3. Basic Concepts in Software Engineering

Process Model 2 Cleanroom
1. Requirements specification
2. Development

a) Design
b) Implementation
c) Configuration management

3. (Independent) Testing
4. Quality test

If quality is sufficient goto (5)
else goto (2)

5. Done

possible in order to allow for test specifications to cover all relevant aspects
of the system.

In the development phase, the designers and implementors are not al-
lowed to test their code. Some implementations of the Cleanroom approach
even require that the development team is not allowed to compile the code
produced. In order to prevent the “testing in” of quality, the only allowed
techniques for the designers and implementors to check their design or code
are code reading, walk-troughs and formal verification approaches.

The goal of the test phase is to verify that the previously defined quality
standards are fulfilled by using functional testing with random input within
the specification range. The randomization of the test data should be directed
in a way that puts more emphasis on the parts of the system that are more
important or more in use then others. It is thus based on the formal specifi-
cation documents as well as use cases that describe the intended uses of the
systems. Bugs that occur within the testing phase are not removed by the
testing team. Instead, only feedback for the development team on where the
bug occurred is provided.

The advantages of the Cleanroom process model are that it allows for
the production of software with very high quality standards and is thus well
suited for all kinds of safety-critical applications. The incremental approach
that is applied within the development process allows for an efficient resource
allocation throughout the entire project life cycle and supports the develop-
ment of large scale systems.

However, the Cleanroom approach is a very complicated and costly
method that requires an appropriate organizational infrastructure as well
as experienced staff to work properly. Especially the use of formal methods
is currently not wide-spread in industrial software engineering environments.
Furthermore, the approach requires a high discipline within the project team
to avoid “cheating” between the development and the quality assurance team.

Prototyping. Prototyping [Floyd, 1983], [Lichter et al., 1994], sometimes
also referred to as rapid prototyping or rapid application development (RAD),
is a Software Engineering method for the systematic support of the early

3.5 Software Engineering Process Models 65

Network Database

User Interface

Application Layer

System Layer

prototypes

} horizontal
prototype

vertical

Fig. 3.17. Classes of Prototypes

development of executable software artifacts. Prototyping supports the user-
designer communication and is often used in research and development, but
also in an industrial environment, to demonstrate and evaluate requirements
and design decisions. The executable system components enable the designer
and the user to experiment with requirements and design decisions and to
find more appropriate alternatives if some of these decisions do not reflect
the intended use or fail to work properly.

Rapid Prototyping can have one out of two intents. First, it can be used
to incrementally build a full sized product through the iterative enhancement
[Basili and Turner, 1975] of the core system. Second, it can also be used to
build a scaled down version of the target system in order to demonstrate and
investigate crucial points.

As shown in Figure 3.17, two types of Prototyping can be distinguished.
Whereas horizontal prototypes implement the functionality of a single layer
of the final product to its full extent, vertical prototypes implement selected
functionalities over all layers of the final product.

Prototyping is a valuable tool in order to reduce risks in the software
development process because it allows the designer and user to identify crit-
ical requirements or design decisions. Therefore, prototyping is often used to
support the planning process of a software development project. The early
and intensive user interaction and the wide variety of existing tools make
Prototyping an important technology besides other software engineering life
cycle models.

However, using Prototyping alone is not sufficient for real applications but
only in conjunction with some of the other methods described in this section.

66 3. Basic Concepts in Software Engineering

First of all, Prototyping often invites the software designer to shift objectives
during the software development process. Projects that started experimental
version of the final product are silently used as a first version of the target
system. However, this is seldom a good idea because of the quick-and-dirty
techniques that are usually used on such prototypes and because of the poor
documentation that is normally available. Thus, the resulting system will con-
tain all these shortcomings throughout its lifetime. Furthermore, Prototyping
often suffers from missing user interaction because of either missing interest
or because of the wrong institutional settings. Prototyping only works with
motivated users that have a strong interest in the functionality of the final
product as for example in a research and development environment.

Boehm’s Spiral Model. The Spiral Model [Boehm, 1988] aims at mini-
mizing risks within the software development process by early detection of
potential problem areas and by allowing a maximum degree of freedom in the
choice of the process for each separate product that occurs within the project.
Besides this major goal, the Spiral Model is also designed to minimize the
resource usage and to ensure well defined quality standards.

The Spiral Model is an iterative model where the input of one cycle is
the direct output of the previous cycle. The process model is oriented at four
major activities that are sequentially executed in every cycle. As shown in
Figure 3.18, these activities are

Identify This activity aims at the identification of goals, constraints and
alternatives for the respective cycle. The goals define what should be
done within the cycle and they also set the quality standards that must
be maintained for any resulting product. The goals are usually subject
to certain constraints that limit the possibilities on how to achieve the
goals. However, there may still be several different ways to a goal and
thus these alternatives must be outlined be the design team.

Evaluate During this activity, the alternatives that were outlined in the
identification step are evaluated with respect to their risks and the im-
plied costs. Risk detection is usually executed by applying prototyping
or simulation techniques.

Develop After the most appropriate alternative is selected on the basis
of the evaluation of the previous step, the goal products must be con-
structed. Thus, the first step during the development activity is to choose
the most appropriate process model for the goal product. This selection
should reflect the constraints and obey the quality standards that were
defined at the beginning of the cycle. After the process model is selected,
it is executed in order to construct the goal products.

Plan In the last activity of each cycle, the previously executed activities
are reviewed and weaknesses that can be identified are reported. Then,
the products and resources for the next cycle are planned. An important
issue in this step is to commit the entire project team to the plan and to

3.5 Software Engineering Process Models 67

Risk

Analysis

Risk

Analysis

Risk

Analysis

Integration
and Testplan

Risk

Analysis

Prototype 1 PT2 PilotPT3

review

Validation

Requi-
rements

Design
Validation

Design

Integration
Test and

Test

Acceptance

Design
detailed

Benchmarking
Lifecyle
Plan

Identify Evaluate

DevelopPlan

RequirementsDevelopment
plan

Fig. 3.18. The Spiral Model

clarify any uncertainties in order to minimize misunderstandings within
the project team.

The major advantage of the Spiral Model is that it is capable of an early
detection of errors and of ruling out sub-optimal alternatives. Due to the
freedom of choice of process models for any product, the approach is very
flexible and thus applicable in a wide range of software development projects.
Furthermore, the incremental planning process that only considers the next
cycle makes it easier to adjust the project plan to changing requirements then
in other development process models.

However, this flexibility has its price which is in this case the high man-
agement effort that is needed to conduct software development processes
according to the Spiral Model. Thus, the approach is not suited for small or
middle-size projects.

3.5.2 Novel Trends in Software Engineering

In the previous section, we have seen a number of process models that have
been developed at the beginning of Software Engineering. Now, we shall
briefly look at more recent approaches in software development methods.

68 3. Basic Concepts in Software Engineering

Comments
Control Code
Compiler Directives

<<agent>>
TCSUnion

+deletionCost(PL : PlanList, P : Plan) : real
+insertionCost(PL : PlanList, P : Plan) : real
+newModuleFromTask(T : TCSTask)

Trackmanager

+book(PL : PlanList) : bool
+check(PL : PlanList) : bool
+free(PL : PlanList)

GUI

TaskmanagerFailuremanager

Net

+findPath()

SimulationEngine

+getClock()

<<agent>>
Agent

-ID : AgentID

insert Task
provide failure info

provide net structure

configure

create

provide net structure

route planning

alarm
alarm

allocate routes

Code Generation

Reverse Engineering

Code

Retain
Design

Diagrams

Fig. 3.19. Round-trip Engineering

Round-Trip Engineering. I have already said in the previous section that
it became obvious soon after the development of the first software process
models that purely sequential models are not well suited for the majority of
projects. The main reason for this is the fact, that the designers understand-
ing of the problem domain grows with the development of the system and
that the increasing knowledge leads to discovering improper design decisions
that must be rectified during the ongoing project.

Round-trip engineering as shown in Figure 3.19 is a general software en-
gineering method that formalizes this process of trial and discovery. During
a Forward Engineering phase, the software system or parts thereof are con-
structed from a specification that reflects the current state of knowledge.
Then, when a testable version of the system exists, errors are discovered and
corrected by changing the code such that the test pass. These changes are
then analyzed in the Reverse Engineering phase order to adjust the specifica-
tion. Thus, reverse engineering is the process of evaluating an existing body
of code to capture important information describing a system, and represent-
ing that information in a format useful to software engineers and designers
[Advanced Software Technologies Inc., 1999].

The main advantage of the round-trip approach is that it supports an in-
cremental development of the system according the current knowledge of the
designer. The changes that are applied to the code in order to correct errors
is often a useful source of information and reflects the growing experience
with the problem domain that is too valuable to be thrown away.

Round-trip engineering is a general method that is usually not used in
isolation but rather in conjunction with other best practices. As we will see
later, round-trip engineering is one of the building blocks of the method
proposed in this book.

DSDM. The Dynamic System Dynamic Modeling (DSDM) method
[The DSDM Consortium, 1998] is an attempt to define an industrial stan-
dard for the development of IT Systems with tight time scales on the basis
of rapid application development (RAD). The method features an iterative,

3.5 Software Engineering Process Models 69

product-centered process model that is used to incrementally build the target
system, it can be seen as an attempt to formalize the prototyping approach
presented in the previous section. The DSDM method is a user-centered ap-
proach that relies on the integration of user input throughout the entire
software development process.

DSDM is not designed as a general purpose method but instead as a
specialized method for business applications where most of the functionality
of the target system is visible or accessible through the user interface. Fur-
thermore, the task of the target system should be decomposable into several
sub-tasks and the method can only be applied when the classes of designated
users are known in advance and when these users are accessible to the devel-
opment team. If the population of designated users is represented by a small
subgroup of users, this smaller group is referred to as the “ambassador user”.

The DSDM method is build upon a number of basic principles that must
be obeyed to in order to get the method working. First of all, the method
depends on active user involvement which means that the ambassador users
are not regarded as the customers but rather as equal partners in the software
development process. Second, the software development team (=developers
+ users) should have autonomy in their decisions. It is essential that the
development team knows that it is allowed to make any decisions that it
regards as essential for the final product. Third, the method is built on the
frequent delivery of (interim) products. The process by which the product is
finally generated can be chosen according to the particular requirements of
the product and is not pre-determined by the method. Fourth, all decision
within the development process must be reversible, i.e. the development team
must use some sort of configuration management that allows for backtracking
or reconstruction of previous product versions. This is necessary to ensure
that potentially risky decisions can be reversed at any time. Fifthly, the
method requires integrated testing and validation throughout the development
process which guarantees that the quality assurance process is built into the
development process.

These are the major principles of the DSDM method, there are a number
of additional assumptions that the method makes e.g. that the requirements
of the target system are frozen at a very high level at the beginning of the
project or that any deliverable must not be over-engineered in its functional-
ity. These additional issues, however, are only of minor interest and are thus
not explained in greater detail.

The life cycle model of a system that is constructed according to the
DSDM method consists of five phases as shown in Figure 3.20. The first
phase consists of a feasibility study that determines the suitability of a RAD
approach and describes the technical and managerial conditions of the de-
velopment process. The second phase is a business study that aims at the
definition of high level functional and nonfunctional requirements, a system
architecture outline and the definition of maintainability objectives. In the

70 3. Basic Concepts in Software Engineering

Agree
Plan

Identify
Design
Prototype

Create
Design
Prototype

Review
Design
Prototype

Business
Study

Business
Review Train

Users

User
Approval

Implementation

Implement

Functional
Model
Iteration

Agree
Plan

Create
Functional
Prototype

Identify
Functional
Prototype

Review
Prototype

Design &
Build
Iteration

Feasibility

Fig. 3.20. The DSDM Method

functional model iteration phase, an incremental prototype is set up that is
re-engineered during the design and build iteration phase. The goal of this
phase is to evaluate the prototype with respect to the needs in the opera-
tional context of the customer. The last phase, finally, is the implementation
of the system in the organizational structure of the customer and the user
training. During this phase, additional project reviews that aim at learning
from the experiences made during the project take place.

The advantages of the DSDM method are that it is far more formal then
normal prototyping approaches and that it is independent of particular tools
or techniques. Furthermore,the DSDM supports institutional learning which
is a matter that is mostly neglected by other approaches. However, the DSDM
is only suited for a specific class of applications and due to the heavy depen-
dency on user interactions, it requires a particular institutional framework
for the software development process.

Booch’s Model. Although the software development model that is pro-
posed in [Booch, 1996] is specifically aimed at object-oriented systems, some
of the ideas are valid in non object-oriented environments as well. Basically,
Boochs model distinguishes between two major aspects of the software de-
velopment process:

The Macro level process model as depicted in Figure 3.21 spans over the
entire life cycle of a project and focuses mainly on management activities
within the project. Booch’s model is somewhat related to the Spiral model
that was discussed in Section 3.5.1: the basic idea of the macro process is
that it should comprise the successive refinement of the system’s architecture
and that it should be steered in a risk-driven manner, i.e. that the highest
risks are identified and the resources are assigned accordingly. Furthermore,

3.5 Software Engineering Process Models 71

Conceptualization

Analysis

Design

Evoution

Maintenance

Fig. 3.21. Booch’s Macro Process

the approach proposes a process of continuous integration (with tangible
milestones) that leads to regular releases with extended functionality.

The macro process is divided into five main activities that cover the entire
life cycle of a software system: The goal of Conceptualization phase at the
start of a project is to establish the core requirements of the target system, to
identify the main risks that may come up during the project and the proof of
concept of the chosen solution strategy. In the Analysis phase, a model of the
system’s desired behavior is produced that is mainly based on scenarios de-
scribing the systems intended actions in particular situations. The main tool
for the scenario-based analysis are Use cases as described in [Jacobson, 1992]
or [Kenworthy, 1997] leading to function points that capture the systems in-
dented behavior in terms of observable and testable behavior. Another goal
of the analysis phase for which use case analysis has proven to be a valuable
tool is to establish a common vocabulary between developers, domain experts
and users. The analysis phase is then followed by the Design phase during
which an architecture outline for the evolving implementation of the system
is created. During the design activities, premature design decisions as well
as delayed design decisions should be avoided as far as possible. However, in
case of doubt, design decisions should be delayed until they are absolutely
necessary. The architecture outline should be executable in the sense that it
runs in a limited way and in that it is written in production quality code,
i.e. Booch’s model does not propose some sort of rapid prototyping. Further-
more, the executable architecture outline should consider pragmatic aspects
early enough to identify potential problems. The main phase in the life time
of a system is the Evolution phase during which the implementation grows
through successive refinement of the system’s architecture. The major activity
during system evolution is clearly coding; pragmatic aspects of the develop-
ment process become pre-dominant. As said earlier, constant integration is a
must and thus releases are generated frequently and tested for the compliance
with the systems requirements. When the system has reached a state where
it implements its initial specification, it enters the Maintenance phase of its

72 3. Basic Concepts in Software Engineering

Indentification

SemanticsImplementation

Relations Fig. 3.22. Booch’s Mi-
cro Process

life cycle. The goal of this phase is to manage post-delivery evolution and
it is focused on localized changes that eliminate bugs and implement new
requirements. Therefore, the maintenance phase can be seen as continuing
system evolution without major architectural changes.

Whereas the macro process model as it was outlined in the previous para-
graph concentrates on the management aspects of the project, the other part
of the model is concerned with technical aspects of the software development
process. The Micro level process model as shown in Figure 3.22 is more or
less specific for object-oriented software development and is divided into four
activities that are repeatedly performed in each phase of the macro process.
Each of these activities contains three basic elements at varying intensity: its
degree of discovery, invention and implementation. Booch uses this charac-
terization to capture the nature of each activity within the four phases of the
micro process model.

The first activity in each cycle is to identify classes and objects. Clearly,
the task is mostly a matter of discovery when applied during the analysis
phase of the macro process. It then requires to select the right abstractions
to model the problem and to decide about what is part of the problem and
what is not. If the micro process is applied during the design phase, the main
objective is to create an object-oriented decomposition of the system’s ar-
chitecture that can be used as an initial architecture outline. In my opinion
one of the best tips that Booch gives in his description of this activity is to
remind the reader that there is no such thing as a perfect abstraction (see
also [Pernici, 1990]), i.e. that every design is a compromise between various
factors such as clarity, performance etc. The next activity in the micro pro-
cess model is to identify the semantics of the classes and objects that have
been described in the first step. This activity is about 45% discovery, 45%
invention, 10% implementation and its main objective is to determine the
distribution of responsibilities among the entities and to identify roles and
responsibilities according to the semantic distance between entities. The key
idea that should be kept in mind during this step is information hiding, i.e.
to focus on semantic abstractions that have maximum cohesion. After the

3.5 Software Engineering Process Models 73

C
os

t

Time

XP

Fig. 3.23. Cost-of-Change
Curves

semantics of the classes and objects have been clarified, the next task is to
identify relationships between them. The goal of this activity that consists of
about 90% invention and 10% implementation is to find dependencies among
classes and objects or groups thereof and to exploit structural patterns that
can simplify the overall architecture. Therefore, this activity is particularly
concerned with the coupling between the design entities. In the Implemen-
tation phase of each iteration of the micro process, finally, the abstractions
and mechanisms that have been developed earlier must be expressed in effi-
cient and elegant code. Booch adds the important reminder to select existing
algorithms and data structures whenever possible.

The major advantage of Booch’s model is that it is developed by a prac-
titioner and derived from experiences in real world projects. In my personal
view, one of the strongest points in Booch’s model is the emphasis on early
feedback for the developers by starting with a code outline of the architecture
in order to determine how it feels. This is a valuable tool for early risk detec-
tion in any software project. What I do not like too much about the process
model is its focus on object-oriented software development especially in the
micro process. I would prefer a more general method that can be applied to
object-oriented system development but that is not limited to it. In the next
section, I will therefore discuss a software development method that shares
some similarities with Booch’s model but that is more extreme in its general
ideas.

eXtreme Programming. eXtreme Programming (XP) [Beck, 1999] is a
relatively new software engineering method that aims at the integration of
several best practices under a common umbrella. The basic assumption of XP
is somewhat contradictory to traditional approaches in that XP assumes that
the cost of change does not rise dramatically over time. In Figure 3.23, I have
depicted the cost-of-change curves as they are assumed by most traditional
approaches on the one hand and by XP on the other hand. As you can see
from the figure, the traditional point of view is that the cost of changes
are higher, the later the are made in the software development process. In

74 3. Basic Concepts in Software Engineering

[Beck, 1999] the author argues that this assumption is not necessary valid any
longer as the average development cycles become shorter e.g. due to improved
tool support in form of integrated development environments or better and
faster compilers. Therefore, the author concludes that it would be natural
to interpret change as the only constant factor in the software development
process and to shift away from software development models that put more
emphasize on early stages and instead to favor a model that puts equal weight
onto all phases of the development process.

The XP method is based upon four basic values that can be found in every
phase of the entire method. The first of these values is communication. Bad
communication habits within the development team lead to wrong assump-
tions, double work, wrong cost estimations etc. Therefore, the people within
an XP team are encouraged to communicate their knowledge to the benefit of
the entire group. As we will see later, the aspect of making knowledge public
is a major goal of the activities that make up the XP process.

The second value of XP is simplicity, the fundamental question is thus
“What is the simplest solution that could possibly work?”. Again, this is a
contradiction to traditional ideas where one of the major goals of a good
design was to “implement for today, design for tomorrow”. Thus, XP takes
a different route in that it postulates to make things simple today and pay
a little more tomorrow if a need to change arises. Instead of starting with
the most generic solution that may be not necessary, XP starts of simple and
changes the simple solution as needed.

The third value is feedback about the current state of the system instead of
un-validated assumptions about that state. Feedback in XP is heavily based
upon automated testing on the unit level and on functional testing on the
system level. Automated testing refers to tests that check the validity of the
test results automatically, requiring no intervention or manual checking by
the user. Thus, the automatic tests can be run after every little change in
order to validate that the system is still working properly. In my personal
experience, the habit of writing automated tests for all major aspects of the
system has proven to be an invaluable tool that reduces development time
as well as debugging time. A prerequisite for generating feedback as early as
possible is to start the productive use of the system as soon as possible in
order to incorporate the end users in the development process.

The fourth and final value of XP is courage. While this value seems to be
a bit odd in the context of software development, it is nonetheless necessary
in order to produce a high quality system. Courage in this context means,
that it is sometimes necessary to enforce decisions even if they are risky,
i.e. to start with the development of a particular feature probably without
knowing about every potential problem in advance. Also, courage is needed
to try out several alternative solutions for a problem and to throw away
bad or unnecessary code. Finally, courage means that the members of the

3.5 Software Engineering Process Models 75

development team must trust their abilities that they will be able to solve
the problem at hand with the given resources.

After these preliminary remarks, it is now time to turn to the flesh and
bones of XP. One of the major advantage of XP is that it is mainly a collec-
tion of best practices that can be individually chosen according to personal
preferences or organizational or project specific constraints.

The planning game Planning in XP is an incremental process that is based
on the ranking of system functionalities according to their current value
for the user. Thus, the main objective of the planning process is to iden-
tify the most valuable pending requirement and to develop a plan how to
implement them. The planning process of XP is related to hierarchical
planning where aspects that refer to requirements that are not of imme-
diate interest are only briefly sketched and then put on hold until their
time has come.
A major aspect of the planning game is that it is jointly done by business
and development people, i.e. the people controlling the budget are pro-
vided with input from the technical staff and vice versa. This approach
avoids mutual misunderstandings about what is possible and what is not.

Small releases The release times of XP project typically range between
one and two months. Obviously, these short time spans do not allow for
major changes or enhancements between two subsequent releases. As it
was already mentioned in the planning game, each release aims at the
implementation of the most valuable business requirement(s), i.e. the
requirement(s) that provide the highest effort/value ratio. As a general
rule of XP releases, it is absolutely necessary that a feature must be
completely implemented before it is released in order to prevent users
from getting frustrated by half-working solutions that may endanger the
acceptance of the entire system.

Metaphor Each XP project should have a system metaphor that relates
the tasks and parts of the system to more accessible entities in the real
world. This metaphor should be chosen from the application area and
serves as a conceptual tool that allows for a consistent description of the
system from a high level of abstraction. A good system metaphor usually
not only improves the communication with the customer, but it is also a
valuable tool for discussions with the development team.

Simple design As mentioned above, the design philosophy of XP is some-
what contradictory to most other approaches as it does not follow the
guideline to “implement for today, design for tomorrow”. Instead, XP
promotes the idea of using the simplest design that can do the job at
hand. However, as there is no general measure that expresses the com-
plexity (or simplicity) of a particular design, XP is relatively fuzzy about
what a simple design in fact is. The only hints that are given occasionally
are that the design should run all test, that it should contain no duplicate
logic or that it should have the fewest possible classes and methods.

76 3. Basic Concepts in Software Engineering

Testing Testing plays a major role in the XP approach and serves two main
purposes. Firstly, testing should increase the developers confidence in the
system that is developed. By running the test cases frequently, the soft-
ware developer can be sure that none of his or her changes have affected
the system functionality. This assurance is important as it promotes the
idea of frequent system integration that will be discussed below.
Secondly, the test cases serve as a coded version of the system require-
ments that can be used to decide about the state of the system in com-
parison of the planned state at a particular point in time. Therefore,
the test cases for a particular requirement should be written before the
component that is responsible for satisfying the requirements is actually
implemented.
An important aspect of XP test cases is that they should be self-checking.
Self-checking means, that the computer can run each test case and com-
pare the result of the test with the result expected by the system devel-
oper. Automated testing is a powerful tool that can significantly reduce
development time as it is possible to run the test cases at almost no
additional cost.

Refactoring The goal of Refactoring [Opdyke, 1992], [Fowler, 1999] is to
improve the structure of existing code. Central questions are thus how the
programmer can change the code such that it makes the implementation
of a new feature simple or how can the program be changed such that it
is easier to understand and to maintain. A crucial aspect of refactoring
is that it does not affect system functionality in any may. The observable
behavior of the program must be the same after refactoring as it was
before. The functional equivalence of the two versions of the system is
usually ensured by running all test cases in order to check whether the
program behaves as expected or not. As a general rule, refactoring should
only be applied when it is necessary – e.g. when a new feature could be
integrated easier if the code was refactored first – and not on speculation.

Pair programming On of the most controversial aspects of XP is the pair
programming approach. In XP, all production code is written by two
programmers on one machine with one keyboard and one mouse. It is
the usual practice in XP projects that two people team up to implement
a particular feature and that these two people are jointly responsible for
all steps until the successful integration of the new code into the existing
system. Pair programming teams encompass two roles: the implementor,
who controls the keyboard and the mouse, is typically concerned with the
question how to implement the particular feature, whereas the strategist is
somewhat further away from the actual code and instead checks whether
the overall approach is ok, which test cases are affected and whether
it might be a better idea to refactor the code before implementing the
feature.

3.5 Software Engineering Process Models 77

Personally, I think that pair programming has some interesting aspects
that make it worth considering applying it in a particular situation but
not as a general practice over the entire lifetime of a project. The problem
is that a full implementation of a pair programming approach usually
requires a complete re-organization of the working style in a development
team that may not be feasible.

Collective ownership Collective ownership is the manifestation of the idea
that all developers within a development team are equally responsible
for the overall product, not only for those parts that the have worked
on. Collective ownership resides somewhat in between “no ownership”,
meaning that changes are made if they fit individual needs and nobody
is responsible for other peoples code, and “individual ownership” where
each piece of code has an owner who is the only person that is allowed to
change it, others have to submit change request that are decided upon
by the owner. The main goal of the collective ownership model is to
make people responsible for what they do, but also to stimulate peoples
interest in the parts of the system that are not directly concerned with.
Obviously, not everybody in the team can know everything about the
entire system, but a fair overview can increase the efficiency of the intra-
team communication as there exists some common understanding about
the system as a whole.

Coding standards As consequence of the collective ownership model ex-
plained in the previous paragraph, some means must be applied to en-
able the members of the development team to understand all parts of the
system. A prerequisite for this understanding is that the code is kept read-
able by sticking to well defined coding standards. In [McConnell, 1993],
the author explains that it is not the major point in coding standards
how the finally look like (although he gives some impressive examples
on good and bad ideas for coding standards), but that the major point
is that they exist and that they are obeyed to e.g. by performing regu-
lar code reviews [Sommerville, 1995]. An important rule for introducing
coding standards is that they should be developed by the development
team itself and not imposed on them from the outside, e.g. by the team
leader.

Continuous integration In an ideal XP project, the code of the system is
tested and integrated at least every day, even better are integration cycles
that lie within a few hours. The integration process of XP is strongly
supported by the testing approach that was described above and that
allows the integration team (integration is done as pair programming job
as well) to decide whether the system is still working as expected or not.
In the latter case, the integration team is responsible to bring the system
back into sync with the test cases. Integration is incomplete until all test
cases are running as before.

78 3. Basic Concepts in Software Engineering

40 hour week As working overtime is a quite common phenomenon in most
software development projects, this requirement of the XP approach seem
to be a bit behind the times. However, as argued in [Beck, 1999], constant
overtime is a clear sign for a serious problem within the project that
should be identified and resolved instead of throwing additional resources
at it. In analogy to [Brooks, 1995] where the author claimed that “adding
more people to a late project makes it even later”, XP argues for a change
in strategy rather than more man-power.

On-site customer On of the most overseen aspects of software develop-
ment projects is that the software is usually not built for the people that
order it, but rather for people that have to cope with the resulting piece
of software as part of their daily job [Sommerville, 1995]. Therefore, XP
argues that is absolutely necessary to have at least one of the end users
in the project team during the development of the system. Especially be-
cause XP features a dynamic approach towards the system requirements
and planning of next steps, the customer within the team is responsible
for answering questions, resolve conflicts and set small-scale priorities.
Although most customer companies will argue that it is too expensive to
have a full-time employee in the software development team for a longer
time, this can be nonetheless cost effective as the on-site customer can
usually continue with his or her normal work and only support the soft-
ware development team if needed – but with much better response times
as it would be the case if the team and the customer were geographically
separated.

The thing that I like best about XP is the fact, that it is merely a collection
of approved best practices that can be combined according to personal needs
and preferences. Although Beck suggests a particular life-cycle, it is quite
straightforward to adapt this cycle to the requirements of a given project. The
problem with the suggested practices is, however, that they heavily depend
on the business culture of the software development company. Applying XP
requires some boldness within the management because the proposed ideas
are sometimes very contrary to traditional ideas in Software Engineering and
there is obviously a risk that the development team will reject the ideas
instead of adopting them. Thus, XP can only work for a team of highly
motivated individuals that are willing to go new ways instead of relying on
established, but not necessarily optimal, methods.

3.5.3 Development Methods for Multiagent Systems

In this section, we will discuss approaches that were specifically build for the
development of multiagent systems. Some of the approaches presented in this
section are general-purpose methods for all kinds of multiagent systems while
others are the result of the analysis of the development process of a particular

3.5 Software Engineering Process Models 79

system. I will present each of them according to the following scheme that
makes it easier to compare individual aspects of the models.

Scope This aspect describes the overall goal of the method and the parts of
the life cycle that are covered by the method. Furthermore, we will also
indicate the origin of the method an whether a case-study was supplied
in the original material that presented the idea.

Models and Representation After the first more introductory part, we
will then become more technical and present the main models of the
method as well as their purposes. We will also briefly discuss the different
levels of abstraction that are supported and whether and how the static
and dynamic aspects of a system are modeled.

Process Model Here, I will outline the process model that is applied in
order to construct the models discussed in the previous aspect and explain
the main steps in the proposed life cycle model.

Assessment This part of the description will summarize the major advan-
tages and the shortcomings of each method. I will also apply a ranking
scheme for general properties as they appear to the author. The proper-
ties that are evaluated are
Generality i.e. the range of multiagent systems that is supported or the

commitment to a particular technology or agent architecture,
Flexibility which covers aspects such as the extensibility of the method

or support for different process models or tools,
Granularity captures the level of detail by which system aspects can

be modeled and the supported levels of abstraction,
Formality e.g. the use of formal methods or well defined semantics of

modeling elements and finally
Tool support which summarizes available tools for a particular

method.

There is a wide variety of methods (see [Iglesias et al., 1998] for a rather
in-depth survey of the field) and the selection of ideas presented in the sub-
sequent sections can only show a small amount of the full picture. However, I
have tried to include those methods that either have a unique view onto the
topic or that are reasonably general to be applied in the general context of
multiagent systems.

Burmeister.

Scope The approach presented in [Burmeister, 1996] is a development
method for multiagent systems based on object-oriented techniques. The
method is limited to systems of cooperative, directly communicating soft-
ware agents. A short case study is provide to illustrate the basic ideas but
no reference for an application of the method in an industrial application
is given.
The approach covers the analysis and design phase of the software de-
velopment process and it does not assume a particular life cycle model,

80 3. Basic Concepts in Software Engineering

although the process model presented later suggest that a linear life cy-
cle model is used by the authors. The distinction between the analysis
and design phase are somewhat fuzzy and seem to make it difficult to
organize them in a sequential process.

Models and Representation The Burmeister approach uses three models
to describe the entities and their interconnections within a multiagent
system. The Agent model describes the internal states, i.e. the goals or
plans, of the agents and thus models the dynamics in the small. The
Organizational model, on the other hand, defines the relationships among
agents and agent types.
These relationships include the inheritance hierarchy, the roles that occur
within the system and the relationships among agents based on the roles
they play. The objectives of this model can be two-fold in that it is either
used to structure the system into several sub- systems or to represent a
real organization. The Cooperation model, finally, describes the dynam-
ics in the large of the target system, i.e. the interactions among agents.
The interactions (limited to communication) are modeled by protocols
based on KQML messages. Furthermore, the method implicitly assumes
a cooperative setting (i.e. benevolent agents).
The method does not suggest any special from of representation, however,
CRC (classes-responsibilities-collaborations) cards are recommended for
establishing the agent model and interaction or collaboration diagrams
known from OOD are suggested for the cooperation model

Process Model The method defines a three step process model as shown in
process Model 3 that corresponds to the three models mentioned above.
Each of these steps should be executable in parallel as the models are
claimed to be independent. It seems however, that the author assumes
these steps to be completed in the given order.

Assessment The method is conceptually clear and intuitive and provides
an easy access to the basic concepts because of the relation to OO tech-
niques. However, it is not very detailed and some of the claims are not
substantial. Most striking is the claim that the different models are in-
dependent and can thus be developed separately but for example, the
cooperation model can only be developed after the entities (agents) that
interact are defined and thus the cooperation model depends on defin-
ing the agents first. Additionally, the activities within a single phase of
the process model are somehow incoherent. For example, in the organi-
zational model, the role assignment to particular agent types is made
before the agent types are defined. Furthermore, the method pays only
little attention to the inter-operation of the system with its environment.
This is however, an important issue if the target system is to be used in
a organizational context and should be explicitly dealt with. The overall
value of the method is hard to decide as it is not clear if the method has
been tested in an industrial project.

3.5 Software Engineering Process Models 81

Process Model 3 Burmeister
1. Agent model

a) Identify and characterize agents and environment
This step mainly aims at the definition of the entities that should become
the agents of the multiagent system and suggests to identify the active
entities in the problem description.

b) Define motivations of the agents
The motivations of an agent are its interests, preferences, responsibilities,
long-term goals etc.

c) Define behaviors (predefined plans)
The method defines the behaviors of an agent in terms of plan schemes
that describe how a particular goal can be reached.

d) Define knowledge and beliefs
In this step, the knowledge and beliefs that are used by the agent to fulfill
its tasks are defined.

2. Organizational model
a) Identify roles within the scenario

In this step, not only the roles that occur within the system are identified,
these roles are also mapped to the agents or agent types that are supposed
to play the roles.

b) Build inheritance hierarchy
Agents are classified according to their knowledge, beliefs, motivations and
behaviors in order to set up an inheritance scheme similar to OO design
that describes the static interconnections between agents.

c) Structure roles within the organization
In this step, the inter-role dependencies are modeled on the basis of the
intended structure of the multiagent system or on the basis of a real orga-
nization that is to be modeled by an artificial system.

3. Cooperation model
a) Identify cooperation partners

For each joint task, the agents that are necessary to complete it are iden-
tified and the type of cooperation (e.g. Resource sharing, synchronization
etc.) is defined.

b) Identify message types
The method suggest to use KQML messages to describe the messages that
are exchanged between the agents.

c) Define cooperation protocols
The patterns of interaction between the agents are described by specify-
ing the cooperation protocols that are needed to complete joint tasks of
different agents.

low high

Generality

Flexibility

Granularity

Formality

Tools Support

82 3. Basic Concepts in Software Engineering

Process Model 4 Kinny and Georgeff

1. Develop external models
a) Identify roles
b) Define role responsibilities (= services)
c) For each service: identify necessary interactions, speech acts etc.
d) Define the agent hierarchy according to the previous steps

2. Develop internal models
a) Analyze means of achieving goals
b) Build the beliefs of the agents

Kinny and Georgeff.

Scope [Kinny and Georgeff, 1996] present an object-oriented development
method for BDI [Rao and Georgeff, 1995] agents and multiagent systems
of BDI agents. The approach covers the analysis and design phases of the
software development process and assumes no particular life cycle model.

Models and Representation The proposed method is centered around
basic models that are in turn subdivided into several sub-models. The
first basic model is the External viewpoint that describes the more coarse-
grained aspects of the system and its dynamics in-the-large and consists
of two sub-models. The Agent model defines the inheritance hierarchy
among agent types and the instance model, e.g. role multiplicity, of the
agent society. The Interaction model describes the responsibilities of each
agent class, the services it provides and the message model in terms of
syntax and semantics of the exchanged messages.
The Internal viewpoint, on the other hand, is concerned with the design of
individual agents according to the BDI paradigm. The internal viewpoint
consists of three sub- models: the Belief and the Goal model describe
the domain-specific belief and goal set, respectively and the Plan model
defines the actions that must be taken by the agents in order to achieve
a particular goal.
The models that are developed in the method are represented as enhanced
UML class diagrams for belief class models and finite state automata
for plan models. Furthermore, formal definitions for beliefs and goals
are provided but the system dynamics are not explicitly modeled in the
method.

Process Model The proposed process model is a sequential model that
consists of two major steps as shown in Process Model 4.

Assessment The proposed method provides a set of models that can be
used to describe most aspects of a multiagent system. The object-oriented
approach supports developers that are familiar with the basic concepts
and also leads to a modular design.
However, the method is limited to BDI agents and provides only a very
sketchy process model that leaves a lot of questions unanswered, e.g.
how to identify the roles, etc. This is the crucial factor in the entire

3.5 Software Engineering Process Models 83

design process as all of the models that are developed in subsequent
steps depend on these decisions. If, however, no guidance is given on how
to actually find the fundamental roles, the entire design may fail because
of wrong decisions at a very early stage of the development process.
Furthermore, the proposed process model is very high level and does not
provide guidance on how to perform the different steps.

low high

Generality

Flexibility

Granularity

Formality

Tools Support

DESIRE.

Scope DESIRE [Brazier et al., 1996], [Brazier et al., 1997],
[Brazier et al., 1998] is a conceptual framework for the analysis
and design of multiagent systems, the extensive case study that is
provided describes a project that is concerned with the management
of an electricity transportation network. Management means in this
respect the monitoring, fault diagnosis and maintenance planning of the
network. The full system consists of seven agents out of which four are
presented in detail in the case study.
The method covers the analysis and the design phase of the software
development life cycle and assumes no particular process model although
a linear, sequential model is used in the case study.

Models and Representation The method takes a compositional view on
agents and systems: the entire functionality of the system is designed as
series of interacting, task-based, hierarchically structured components.
Each task can either be primitive or it can be composite; a task hierarchy
is constructed by applying a recursive top-down decomposition process
on the initial system task. The compositional view on agents sees an
individual agent as a collection of task-solving units (components). The
terms “task” and “component” seem to be used interchangeably in the
DESIRE documentation.
The DESIRE framework proposes two models that should be specified
by the system designer. The intra-agent model contains the expertise
descriptions for domain tasks, the knowledge requirements and the rea-
soning capabilities for solving these tasks. The inter-agent model, on the
other hand, describes the expertise to perform and guide coordination,
cooperation and social interaction among agents.

84 3. Basic Concepts in Software Engineering

Process
Control

Unit
Control
Comm.

Unit

World
State

Monitor

Task
Execution

Unit

Task Control Unit

Fig. 3.24. The Generic
DESIRE Agent Architec-
ture

Process Model 5 DESIRE
1. Task decomposition

a) Define overall task hierarchy.
b) Define individual task descriptions (inputs, outputs, meta-object relations,

e.g. which task reasons about which other task, etc.).
2. Information exchange model

a) Specify the information links between components.
b) Define input/output relations, i.e. the input of which component is the

output of which other, a translation mechanism enables to designer to use
different languages for the task internal knowledge representation.

3. Sequencing of sub-tasks
a) Describe task control knowledge (temporal order of tasks, effort to solve

the task, etc.).
b) Specify intra- and inter-agent sequencing of tasks

4. Sub-task-delegation
a) Assign tasks to agents.
b) Perform functional grouping of tasks.

5. Knowledge structures Define structures for the domain knowledge by pro-
viding concepts that describe the distinguishable objects in the domain and
relations that describe how the concepts relate to each other.

DESIRE is centered around the generic agent architecture depicted in
Figure 3.24 that consist of five elements. The Task Control Unit encap-
sulates the control knowledge of the agent, i.e. the relations between
the components and the activation schemes that are enacted during the
agents operation. The Process Control Unit is responsible for coordi-
nating the agents reasoning processes, the Communication Control Unit
manages for the social aspects of agent by handling incoming and out-
going messages, the World State Monitor constantly updates the world
model of the agent by incorporating perceptions into the current model
and a task-specific Task Execution Unit, finally, implements the particu-
lar skills of different agents.

3.5 Software Engineering Process Models 85

The system dynamics are modeled by information links between the prob-
lem solving units, they can thus be used to model intra-agent information
flow as well as inter-agent information flow. The concepts used in DE-
SIRE can be formalized using temporal logic.

Process Model DESIRE proposes a five step process model as shown in
Process Model 5 that is executed in sequential order.

Assessment The major advantage of the DESIRE method is that it provides
a unified view on all entities within the system. The holonic approach
makes it easier for the designer to think in functional terms rather then
in agent-oriented concepts. However, the commitment of the method to
a specific agent architecture and the strict process model limit its general
applicability to a broader range of problems.

low high

Generality

Flexibility

Granularity

Formality

Tools Support

MAS-CommonKADS.

Scope MAS-CommonKADS [Iglesias et al., 1997] is a general purpose mul-
tiagent analysis and design method based on the CommonKADS design
method for knowledge-based systems (KBS). CommonKADS supports
most aspects of a KBS development project, including project manage-
ment, organizational analysis, knowledge acquisition, conceptual mod-
eling, user interaction, system integration, and design. The method is
result oriented rather than process oriented and it describes KBS devel-
opment from two perspectives. The result perspective captures a set of
models that describe different aspects of the KBS and its environment.
These models are continuously improved during a project life cycle. The
project management perspective, on the other hand, features a risk-driven
generic spiral life cycle model that can be configured and adapted to the
particular project.
CommonKADS extends this framework by adding techniques from
object-orientation (OMT, OOSE, RDD) and protocol engineering (SDL,
MSC) and tailoring them towards the specific requirements of multiagent
systems. The design method is primarily suited for systems of directly
communicating software agent. An example application called the “Travel
Agency” is provided in [Iglesias et al., 1997]. In the problem domain, a
user requests a flight from the system and system finds the cheapest avail-
able flights with the lowest possibility of delays by querying the available

86 3. Basic Concepts in Software Engineering

Coordination modelExpertise model Crganizational modelAgent model Task model

Analysis

Application model Architectural model Plattform model

Design

Fig. 3.25. Hierarchical Set of Models

flight carriers. The method covers the analysis and design phase of the
software development process and proposes a risk-driven, component-
based approach but no details of how this process can be implemented
are provided.

Models and Representation The MAS-CommonKADS method is cen-
tered around a set of different models as shown in Figure 3.25 that are
used to describe the target system. During the Analysis phase of the
development process, the first sub-set of models to be constructed con-
tains the Agent model that describes the agent characteristics such as
the reasoning capabilities, the skills of the individual agent or the agent
architecture to be used. Second, the Task model defines the task decom-
position within the problem domain and contains the task descriptions.
Thus, the task model is closely related to the Expertise model where the
basic knowledge requirements for carrying out the tasks are described.
The Coordination model captures the conversations between agents, their
interactions and the protocols used. The context of this coordination pro-
cess is described by the Organizational model in terms of the structure
of the agent society or the agent hierarchy. The Communication model,
finally, covers the user interface of the target system.
During the Design phase of the development process, these initial models
are used as the basis for the design model, which is composed out of the
Application, the Architectural and the Platform model. The Application
model captures the overall structure of the target system, the Architec-
tural model defines the networking and telematic requirements and the
Platform model describes the development platform for the system.
The method recommends a number of techniques to describe these mod-
els, for example
• Use Cases during the conceptualization phase to describe prototypical
uses of the target system,

• Class-Responsibility-Collaboration (CRC) cards for the agent modeling
process,

• Event Flow Diagrams and Specification and Description Language
(SDL) diagrams for the coordination model or

3.5 Software Engineering Process Models 87

• the Conceptual Modeling Language (CML) and Inference Structure Di-
agrams for knowledge modeling.

Process Model The process model of the MAS-CommonKADS method is
shown in Process Model 6.

Assessment The MAS-CommonKADS method is very detailed and pro-
vides a conceptual framework for the analysis and design of multiagent
systems that is based on an existing, working approach that is currently
in use for the development of knowledge- based system. The method is
not focused on the functional aspects of the target system, it also models
the target environment and important aspects such as agent management
aspects.
On the other hand, the method lacks a bit of an overall structure and
sometimes appears as a collection of models with no explicit links between
them. This makes it hard for the less experienced user to fully understand
the structure of the model and to identify the most suitable model for a
particular aspect of the target system.

low high

Generality

Flexibility

Granularity

Formality

Tools Support

Gaia.

Scope [Wooldridge et al., 2000] propose a method for the development of
multiagent applications with the following characteristics:
• The application is coarse-grained, i.e. the computational resources that
are available to a single agent should be comparable to those of a UNIX
process.

• The problem domain is an optimization problem where all agents share
the common goal to minimize or maximize some given measure. The
problem domain does not contain true conflict situations that must be
solved.

• The agent society is heterogeneous, i.e. agents may be implemented in
different programming languages or on different platforms.

• The multiagent system is relatively small, i.e. less then 100 agents.
• The agents do not exhibit mobility.
The proposed method covers the analysis and design phase of the software
development process on a very high level. The resulting design is intended
to be used as the input for traditional software engineering methods that
refine the high-level design into a particular implementation.

88 3. Basic Concepts in Software Engineering

Process Model 6 MAS-CommonKADS
1. Conceptualization

This phase yields a preliminary description of the problem area and an informal
requirements definition.

2. Analysis
This step performs a requirements specification by developing several of the
above mentioned models.
a) Agent model In this step, initial instances of the agent model are created

by performing a semantic analysis of the problem description and apply-
ing conceptual distance heuristics based on the determination of shared
knowledge structures, organizational or geographical distribution etc. to
the initial problem description.

b) Task model The goal of this step is the task decomposition and goal de-
termination of the agents using a top-down decomposition. The resulting
task descriptions include the name, input/output data, control structures,
frequency, preconditions, required skills of the performer etc.

c) Coordination model This model describes the interactions and coordination
protocols by specifying prototypical situations identifying messages and
exchanged data in the form of SDL diagrams.

d) Knowledge model This model contains the domain knowledge (declara-
tive knowledge of the problem domain), the inference knowledge (what
sorts of inferences are needed e.g. diagnosis, assessment, search, etc.), the
task knowledge (order of inference structures) and the problem solving
method(s) (define the implementation of each inference type needed) that
occur within the target system.

e) Organization model The result of this step is a static description of the
relationships between agents as well as the organizational structure of the
enterprise before and after the introduction of the MAS, i.e. the given
structure of the enterprise and the target structure.

3. Design
The design model refines the models of the analysis step and constructs the
three design models mentioned earlier.
a) Agent network design model This model describe the infrastructure (net-

work, coordination facilities etc.) of the MAS, the network facilities
(naming service, security, encryption, etc.), knowledge facilities (ontology
servers, knowledge representation translators, etc.) and the coordination
facilities (protocol servers, group management facilities, resource alloca-
tion, etc.) within the target system.

b) Agent design model In this step, the most suitable architecture for each
agent is determined. The method suggest a generic agent architecture that
consists of a user-communication unit for the interaction between the agent
and the user, an agent communication unit for the interactions among
agents, a deliberation and reaction unit for the reasoning of the agent and
an external skills and services unit that provides the agents services to the
other agents.

c) Platform design model In this model the software and the hardware plat-
form for each agent are selected and described.

3.5 Software Engineering Process Models 89

Requirements
Statement

Roles
Model

Interaction
Model

Aquaintance
Model

Services
Model

Agent
Model

Analysis

Design

Fig. 3.26. Model Relations in Gaia

Models and Representation The method features an integrated view
onto the system as a computational organization of interacting roles.
Roles are dynamically assigned to agents and an agent can play sev-
eral roles at the same time. The main models that are developed in this
method are discussed below, the relationships between the individual
models are shown in Figure 3.26, the process model itself is outlined in
Process Model 7.
The Roles model contains several abstract descriptions of an entities ex-
pected function. Each of these descriptions defines the permissions of the
role, i.e. the resources that can be used in the course of problem solving as
well as the resources that cannot be used during this process. Resources
in this respect are usually information or knowledge structures that are
either available or not. Second, the role is defined by its responsibilities,
i.e. what it has to do within a well-defined context. The responsibilities
are defined in terms of liveliness conditions that express what has to be
done while the role is active and in terms of safety conditions that de-
scribe invariants that must be maintained at all time during the lifetime
of a role.
The Interaction model describes the links between individual roles and
the protocols that are used to interact. Each of these protocol descrip-
tions is given by its purpose, e.g. “information request” or “assign task”,
its initiator, i.e. the role that starts the protocol, the responders that
follow the protocol initiation, the input information that is used by the
initiator, the output information that is supplied to the responders and
the processing that is performed by the initiator.
The Agent model defines the agent types by aggregating roles, e.g. to
increase the efficiency of the application. The agent model does not sup-
port inheritance relationships between roles as they are regarded not
necessary by the authors because the granularity of the application will
seldom require other mappings then one-to-one mappings from role to
agent type.

90 3. Basic Concepts in Software Engineering

Process Model 7 Gaia
1. Analysis

The goal of this phase is to understand the structure of the target system
without referring to a particular architecture.
a) Identify role prototypes
b) Identify the protocols of each role
c) Elaborate the roles model
d) Go to 1a until finished

2. Design
The goal of this phase is to transform the models from the first phase into
sufficiently low level to serve as an input for traditional design processes.
a) Create the agent model by aggregating roles
b) Develop the service model
c) Develop the acquaintance model

The Service model describes the functionality of an agent. Functionality
in this respect refers to a single, coherent block of activities and is defined
by the inputs, the outputs and the pre- and post-conditions. Note that
this description is still on a very high level and does not prescribe any
particular implementation of the functionality.
The Acquaintance model, finally, defines the communication links between
agents, the goal of this model is to identify potential communication
bottlenecks.
The method proposes some formal language to represent the liveliness
and safety conditions of a role and some templates for role schemata and
protocol definitions.

Process Model The process model that is used within the method consists
of an iterative analysis phase that is followed by a sequential design phase.
The relation of the models to these two phases of the development process
are shown in Figure 3.26
As already stated above, the resulting design is thought as a high level
description that must be refined in subsequent steps in order to yield to
the final design. The proposed process model is shown in Process Model 7.

Assessment The advantage of the Gaia method is that it provides a de-
tailed set of models that capture almost all relevant aspects of the target
system. It is also straightforward to apply even by unexperienced users.
Furthermore, the method is not committed to any particular technology
such as BDI agents etc.
However, the major problem is the attempt to define the method on top of
other software engineering techniques. The potential problem of this idea
becomes apparent if is not possible to find an adequate implementation
for the high level design. The entire design (perhaps even the analysis)
has to be revised in order to develop a model that can actually be imple-
mented. This problem could be weakened if the proposed set of models
contained a model of the environment of the target system but still this

3.6 Quality Management and Systematic Learning 91

would bear potential problems if the refinement from a high level to a
low level design and finally to an implementation is not straightforward.

low high

Generality

Flexibility

Granularity

Formality

Tools Support

3.5.4 Discussion

Most of the models outlined in the previous sections are normative models.
They define – from the (subjective) point of view of the respective author –
which activities make up the software engineering task, the temporal ordering
of these activities, the involved products and often also the notation that must
be used. However, the problem with this approach is clearly pointed out in
the following quote from [Zemanek, 1985]: “One cannot standardize thinking
and one should not even attempt to do so.”

Furthermore, this fact usually limits the applicability of a particular
method whenever there is a deviation of the prerequisites of an actual project
and the prerequisites of the method to be used. In short, these methods fo-
cus on software engineering processes as they should be, not as they are really
like [Carroll and Rosson, 1985]. Therefore, it seems to be a more promising
idea to follow the suggestion from [Green, 1990] to “ . . . concentrate on what
it seems that people really do, not on what they might do if they were per-
fect.”. This approach can lead to more pragmatic software engineering models
that are based on an explicit cognitive model that supports individualized
strategies and notations.

However, before we turn towards the software development method that
is presented in this book and that tries to follow the above remarks, I will
briefly discuss another important aspect of a software development method:
quality management, learning and re-use.

3.6 Quality Management and Systematic Learning

Quality assurance and quality management are topics that were neglected in
the software development process for a long time. Recently, however, the idea
of integrating quality measurement in the software development process has
shown to pay in terms of faster development cycles and lower maintenance
cost. Another important issue that has come up in the software development

92 3. Basic Concepts in Software Engineering

process is organizational learning. Based on the insight on how dependent
an organization is on the knowledge that is informally stored mostly in their
human resources, methods were introduced to collect and to enlarge the orga-
nizational knowledge in a permanent learning process throughout the entire
organization.

In this section, we will discuss two ideas that were developed in the con-
text of software development to ensure high quality software and knowledge
preservation over project boundaries.

3.6.1 The Quality Improvement Paradigm

The Quality Improvement Paradigm (QIP) [Basili et al., 1994] is a method-
ological framework for systematic improvement of products and processes
within software development projects. The QIP is oriented at Total Quality
Management (TQM) [Ishikawa, 1985], a conceptual framework that was de-
veloped in Japan and that aims at introducing quality assurance mechanisms
into industrial production processes. However, the QIP goes a bit further then
TQM as it also defines how to integrate learning feedback into the quality
assurance process.

The QIP should only be applied in software development environments
that can be unambiguously characterized, i.e. that allow for a clear descrip-
tion of all sub-processes and their interdependencies as well as for the clear
identification of the products that are involved in the process. Furthermore,
the QIP relies on a realistic definition of quality goals. This implies that the
desired quality standards must be quantifiable in order to decide whether the
process has met the quality goals or not.

The QIP can be viewed as a development process “wrapper” that is put
around a particular development process model in order to support system-
atic learning. Basically, the QIP consists of six steps as shown in Figure 3.27
and Process Model 8.

The QIP features two feedback cycles, one is project feedback that is pro-
vided during the execution phase (step 4) and the other is corporate feedback
that is provided by the models that are constructed on the basis of past expe-
riences. However, no institutional framework is provided by the QIP itself and
this makes it sometimes difficult to apply it in industrial projects. To over-
come this limitation, the next section will introduce a flexible institutional
framework for constant quality improvement and organizational learning.

3.6.2 Experience Factory

The Experience Factory [Basili, 1989], [Basili et al., 1994] is a framework that
supports systematic learning within an organization and that is already in
use in large scale industrial environments [Houdek et al., 1998].

The basic idea underlying the Experience Factory is closely related to
case-based reasoning [Kolodner, 1993] and operates on similarities of software

3.6 Quality Management and Systematic Learning 93

Fig. 3.27. The Quality Im-
provement Paradigm

Process Model 8 Quality Improvement Paradigm
1. Characterize

In this step, the goal products, the development environment, available data,
used tools, etc. for a particular project are collected and documented.

2. Set (quantifiable) goals
After the characterization is completed, the quality standards must be defined
in terms of quantifiable properties of the involved products. The resulting goals
should be ordered according to their relevance.

3. Choose processes
The processes that are to be applied within a particular project are chosen in a
goal-oriented manner [Basili, 1993] on the basis of their quality properties and
on previous experiences.

4. Execute
The selected processes are executed in order to build the target system. This
step is the actual software development process as usually defined in the soft-
ware engineering literature.

5. Analyze
The resulting project data and determined problems are analyzed in order to
make recommendations for future projects with similar characterizations.

6. Package
In this step, either new models are defined or existing models are refined on
the basis of the experiences made during the project execution phase.

development processes. In case-based reasoning, the specification of a problem
to be solved is compared to specifications of problems that were previously
solved and if a sufficiently similar problem specification is found, the previous
solution is adapted in order to fit the usually slightly different new problem.
If the adapted solution is sufficiently different, it is added to the repository
for further use.

94 3. Basic Concepts in Software Engineering

Generalize

Formalize

Tailor

Package

Support
Project

Experience

Base

Analyze

Set Goals

Characterize

Choose Process

Execute

Process

Experience FactoryProject Organization

Fig. 3.28. The Experience Factory

The process idea of the Experience Factory is almost the same, but in-
stead of just proposing the idea of experience reuse, the Experience Factory
also offers an organizational framework for this process. As shown in Figure
3.28, the Experience Factory method differentiates between two organiza-
tional substructures: the Project Organization is responsible for the project
work on the basis of software development process according to the QIP and
on the basis of the process models presented in the previous sections. The Ex-
perience Factory, on the other hand is completely independent of the project
organization and is responsible for analyzing and synthesizing all kinds of
experiences and to provide the organization-wide repository of experiences.

Experience packages that are stored in the repository include Product
packages such as programs, architectures, designs etc., Process packages de-
scribing process models, methods, etc. or Relationship packages that contain
cost and defect models, resource models, etc. Furthermore, there also ex-
ist Tool packages that are divided ito constructive packages that cover tools
such as code generators, configuration management tools, and analytic pack-
ages with tools such as profilers or static dependency analyzers.Management
packages contain Management handbooks, decision support models, etc. and
Data Packages, finally, hold project databases, quality records and the like.
These experience packages are then used to characterize and understand new
projects , to evaluate and analyze existing structures and processes, to predict

3.7 Summary 95

and control the software development processes or to motivate and improve
processes.

The major advantage of the Experience Factory is that it provides a single
interface to the knowledge that exists within an organization and a central
authority that collects and updates this knowledge. Furthermore, an Expe-
rience Factory can be introduced in parallel to the ongoing business of an
organization and does not require complicated synchronization processes nor
does it disturb the normal operational business. Finally, the idea of an Expe-
rience Factory is highly scalable. It can be used by an individual programmer
who will then play several roles in order to store his or her personal experi-
ences for later reuse, or it can be introduced into a large company as strategic
department that increases the resource efficiency of the company.

The knowledge structures that will be presented in the course of this
book can serve as basic structure for an experience base in order to store the
experiences that are made during the development of multiagent systems.

3.7 Summary

In this chapter, I have outlined some major Software Engineering concepts
starting with a cognitive perspective on engineering in general and software
engineering in particular. Then, we saw a general model of software engineer-
ing and discussed product and process models as the building blocks of this
model. Finally, we have discussed some aspects of quality management and
organizational learning.

In the next chapter I will demonstrate how some of these concepts are
adapted to the specific case of multiagent systems and how they are assembled
into a uniform framework.

4. The Conceptual Framework of Massive

The ideas and concepts of the previous chapter constitute the basis of general
Software Engineering methods which will now be refined for the particular
case of multiagent system development. To this end, I will now explain the
basic concepts and ideas of the Massive method how its building blocks are
assembled into a coherent method that can be used to develop multiagent
applications.

4.1 The Foundations of Massive

In this book, I propose a pragmatic method for the development of multiagent
systems that accounts for the specific requirements mentioned of MAS as they
were mentioned in the introduction in Chapter 1. The building blocks of the
Massive method are based on the following ideas:

View-oriented vs. model-oriented All of the MAS specific process mod-
els that have been discussed in Section 3.5.3 develop several distinct mod-
els of the target system that must be subsequently integrated in order to
construct the final system. This integration process is not always trivial,
as the links between the models are usually neither explicitly defined nor
obvious. Thus, I suggest adopting a view-oriented approach instead. A
view-oriented method deals with the system as a whole and uses differ-
ent perspectives on the entire system as fundamental abstraction. The
system is not decomposed but rather viewed from different angles with
different foci on particular aspects. The advantage of this approach is
that it avoids the integration process because the model is always consis-
tent from any view as changes in one view are always directly propagated
to other views.

Iterative vs. sequential A sequential process model has the optimistic as-
sumption that everything will work out as desired and that all documents
are complete, correct and consistent once they are created. This assump-
tion may hold in well-understood problem domains for which a lot of sys-
tems have been constructed, but it is unlikely that it holds in the case of
multiagent systems because this class of systems is not well-understood
at all until now. Any process model that is to be used in this context

J. Lind: The MASSIVE Method, LNAI 1994, pp. 97-120, 2001.
 Springer-Verlag Berlin Heidelberg 2001

98 4. The Conceptual Framework of Massive

Imple-
men-
tationModel

Planning

Conceptualization

Analysis
Design

Coding Standards

Performance Tuning

Code

Testing

Fig. 4.1. Balanced Ap-
proach

should therefore reflect the fact that the system requirements and de-
sign documents are normally incomplete, incorrect and inconsistent due
to the limited experience with this class of systems. To overcome these
difficulties, it is a good idea to iterate the processes that are applied to
construct the documents and to evaluate the results of each iteration
according the explicit quality measures that are defined early in the de-
velopment process. Although this approach does not guarantee that the
documents capture all relevant aspects in the correct way, it nonetheless
reduces the risk of errors because of the repeated quality evaluations.

Balanced vs. biased Traditional Software Engineering methods are often
biased towards the modeling aspects of the problem in question and ne-
glect the coding part of the resulting system. Figure 4.1 shows a sim-
plified view on the situation: modeling the system is usually concerned
with high-level tasks such as conceptualization or planning whereas for
the implementation part of the system aspects such as performance or
successful testing are more relevant. The traditional software engineering
process models that have been discussed in Section 3.5.1 put most of
their emphasis onto left hand side of the figure and treat the implemen-
tation of the system as a “simple” transformation of the model into code.
Novel trends in the Software Engineering community, as they have been
discussed in Section 3.5.2, especially the Object-Oriented approaches,
feature a more code oriented point of view and tend to favor the right
hand side of the figure.
In this book, I will adopt a point-of-view that treats the model and the
code that implements the model as equally important parts of the whole.
TheMassive development method clearly relates the parts of the model
and the matching parts of the code and thus supports the construction of
code that is well-structured and easy to maintain because of the explicit
links between requirements and implementation.

Requirements-driven vs. technology-driven In a requirements-driven
development approach, the requirements of the target system determine
the technology that is to be used for the system design and implemen-
tation and not vice-versa. Thus before committing to a particular tech-
nology such as multiagent systems, it is necessary to analyze whether
the intended technology is appropriate for the particular problem or not.
This is clearly pointed out in [Wooldridge and Jennings, 1998] where an

4.2 Knowbbles 99

excellent overview on various problems that may come up with the de-
velopment of multiagent is provided. Thus, the designer must not limit
himself to a particular technology if it is not appropriate to the problem
under consideration.
Consequently, a requirements-driven approach starts earlier in the life
cycle of the target system when the fundamental characteristics of the
problem under consideration are analyzed and then it is decided, which
technology is the most appropriate to tackle the problem. In a rigor-
ous requirements-driven approach, a functional analysis leads to a sys-
tem decomposition that is developed without a particular technology in
mind. After the system is decomposed, objective decision functions are
applied in order to find the most appropriate technology for the task.
However, the basic difficulty of this idea is that until now, no decision
functions that decide whether a multiagent solution is appropriate exist
and are thus subject to further research in the multiagent community
[Jennings et al., 1998], [EURESCOM, 1999].

The resulting development method continuous previous work reported in
[Lind, 1999a]. However, I still do not attempt to invent a uniform method for
all types of applications (the “silver bullet”) but I move modestly towards
making my experience in the design of multiagent systems available to other
system designers. In particular, theMassive method provides a specific mul-
tiagent system product model, a nested process model that consists of a macro
process model that covers the entire life cycle of the system development as
well as several micro process models that are used to describe particular as-
pects of the target system and a framework for institutional learning in the
development of multiagent systems.
After this introduction to the conceptual foundations of Massive, I will

now proceed to the more technical details on how these ideas are implemented
in a software development method.

4.2 Knowbbles

The fundamental building blocks in theMassivemethod are so-called knowb-
bles – with the term being comprised of “knowledge” and “bubble”. Knowb-
bles represent all kinds of information that are available to the software en-
gineer, ranging from conceptual entities such as design decisions or design
constraints over implementation details up to test cases or information about
physical entities such as system components or hardware devices.
Although we have claimed earlier that we only have a single design that

captures all aspects of the system under consideration, it is often convenient
to attribute knowbbles according to their major purpose. Therefore, we will
first differentiate between design and implementation knowbbles in order to
capture the dichtonomy that was explained in Sections 3.4.1 and 4.1. Design

100 4. The Conceptual Framework of Massive

Knowbble
Family

Design Implementation

Fig. 4.2. Connections be-
tween Design and Imple-
mentation

knowbbles are more conceptual entities that allow for a general description
of the aspects of the system under consideration. For example, the class hi-
erarchy of an application is a central aspect of the system design that is
often represented as collection of knowbbles that are expressed in terms of
some graphical notation such as the UML. Implementation knowbbles, on the
other hand, are more specific e.g. to a particular programming language and
therefore they are often the result of applying some sort of transformation
process to the design knowbbles. Essentially, however, these two representa-
tions are isomorphic, i.e. design knowbbles and implementation knowbbles
describe the same system.
Furthermore, we can classify the knowbbles as eithertask specific in that

they capture properties or entities that are specific to the task at hand or
as task independent knowbbles that describe general properties which do not
pertain just to a particular application but to an entire class of applications.
Background knowledge about the application domain are thus task specific
knowbbles whereas background knowledge about developing computer pro-
grams in general is represented by task independent knowbbles.
Because of the isomorphism between design and implementation described

earlier, the Massive method sees the design and the implementation that
realizes the design as a single collection of knowbbles. These knowbbles are
linked in a flexible way that allows knowbbles of one group to be mapped
onto knowbbles of the other group. This mapping is not unique as shown
in the Knowbble map in Figure 4.2 where a single knowbble of the design
is linked to several knowbbles of the implementation and vice versa. A col-
lection of either only design or only implementation knowbbles is called a
knowbble family, i.e. such a family is limited to knowbbles of a particular
class. Depending on the type of the involved knowbbles, the links that are
shown in Figure 4.2 can have different meanings. For example, a link from a
design knowbble that represents a particular algorithm to an implementation
knowbble means, that the implementation knowbble represents the code that

4.3 Views 101

Design Implementation

Fig. 4.3. Knowbble
refinement

implements the algorithm. If, on the other hand, the implementation knowb-
ble represents information about a particular hardware device, the link to the
design knowbble usually means that the design knowbble depends on partic-
ular properties of the hardware device and that a change in the hardware
causes a change in the design.
Knowbbles are recursive structures that can be refined or aggregated. The

transition from Figure 4.2 to Figure 4.3 illustrates the idea of knowbble refine-
ment. The single knowbble in the lower left corner of Figure 4.2 is refined into
five design knowbbles in Figure 4.3 and the single implementation knowbble
in the upper right corner of Figure 4.2 is refined into four implementation
knowbbles in Figure 4.3. The inverse process where several knowbbles are
combined into a single knowbble is called knowbble aggregation.
The Massive method allows to define, alter, refine or aggregate knowb-

bles up to the desired level of abstraction and it is the task of the system
designer to identify the relevant knowbbles of the target system and to find
a structure for the software systems that implements these knowbbles.

4.3 Views

In this section, I will present one of the fundamental abstractions used in
the Massive method to analyze and design the target system from different
points-of-view. I will first introduce the basic idea in a very general sense and
then refine the generic ideas for the case of multiagent applications.

102 4. The Conceptual Framework of Massive

User
Interface

View

Data
View

Function
View

System

Dynamics
View Fig. 4.4. A Generic View Sys-

tem

4.3.1 What and Why?

Knowbbles are a valuable tool to describe and to model the basic properties
of a software system, but they are too general a concept for particular appli-
cation areas. Therefore, we need a terminology that is more closely related
to the particular need of multiagent systems design.
Knowbbles groups, as they were introduced in the Section 4.2 are not

suited for this task for mainly two reasons. First, knowbble groups are limited
to a particular class of knowbbles (either design knowbbles or implementation
knowbbles) and second, knowbble groups only capture the refinement process
that is performed during system development.
The terminological framework that I propose in the Massive method

is therefore based on so-called views. Views (sometimes also referred to as
“viewpoints” or “viewports”) have been discussed in the literature e.g. in
[Sommerville, 1995] or [Balzert, 1998b] where each view is a representation
of a different perspective on the system. However, although all of these ap-
proaches share the same terminology, they still have different ideas of what is
meant by a “view”. [Balzert, 1998b], for example, differentiates between four
different views that a developer can have on the target system. As shown
in Figure 4.4, these four views are the Data view, the Function view, the
Dynamics view and the User Interface view. Although it is claimed that the
above views can be applied to any application, I will later argue why I think
that a more specific system of views that is oriented at the basic requirements
of the problem class is more adequate.
In [Sommerville, 1995] some possible interpretations are listed: a view-

point is either a data source or sink within a system, a receiver of services, i.e.
viewpoints are external to the system and receive system services or provide
data for performing these services or it is a representation framework such

4.3 Views 103

Aspects

Code
Component

System
Code

Aspect
Weaver

Fig. 4.5. Aspect Weaver

as an Entity-Relationship model or a Finite-State Machine that describes a
(sub)set of the system properties.
Before I will explain the interpretation of the term that is used in this

book, I would like to take a brief excursion to a relatively new idea in software
development: Aspect-Oriented Programming [Kiczales et al., 1997].
Aspect-Oriented Programming tries to solve a problem for procedural

programming languages as well as for object-oriented approaches. The prob-
lem that is dealt with are design decisions that effect several, functionally
distinct parts of the system at the same time. A prominent example for this
phenomenon is error-handling: the error handling strategy of a software sys-
tem is usually the same throughout the entire system without being explic-
itly modeled anywhere. Thus it is hard to alter the strategy without major
changes to most parts of the system – a process that requires a high effort
and that is error-prone. If, on the other hand, the error handling strategy
was explicitly modeled, the designer could change it easily and then use tools
to re-build the system automatically. It is the goal of the aspect-oriented
programming research to develop the mechanisms and tools for this process.
Aspect-oriented programming differentiates between two classes of entities

that make up the system design. Components are the functional units that
emerge through the functional decomposition of the target system whereas
aspects represent the design decisions that cannot be encapsulated into a
single functional unit. The idea of Aspect-Oriented Programming is to express
aspects as meta-rules over the set of components and weave the system code
from the code of the components and the aspects as shown in Figure 4.5.
While this idea seems to be quite natural, it bears a number of problems

that have to be solved before aspect-oriented programming can become an
accepted and established programming paradigm. The major problem is the
mutual dependency of the programming language of the code, the rule lan-
guage to express the aspects and the aspect weaver itself. In the current state
of the development, a rule language and an aspect weaver must be developed
for each target language. Furthermore, it is still not clear what expressive
power the rule language must have and whether or not all relevant aspects
of a particular system can be modeled with the basic approach.

104 4. The Conceptual Framework of Massive

Representation 1 Representation 2
View 1

View 2

View 3

View 4

Fig. 4.6. Views

Because of these shortcomings, we will not use the full idea of aspect-
oriented programming but rather borrow the basic observation that in every
system there exist aspects that cross-cut all functional decompositions. My
interpretation of the term view is therefore closely related to the properties
(aspects) of the system under development and not so much on the observable
behavior that is captured by interpreting viewpoints as services as mentioned
above. The interpretation as representation framework is also not applicable
as this seems to be a to narrow interpretation for my taste. It is well pos-
sible (and sometimes necessary and extremely helpful) to describe the same
aspect of a system using different notations. For the same reason, the idea
of interpreting views as data sources or sinks is too narrow as well because
different data sources or sinks can belong to the same conceptual block of the
system and a separation into different views can easily appear to be rather
superficial or even distracting.
Therefore, I have decided to approach the problem of decomposing the

system into several views from the direction of the design process. During
the development of the system design, the designer will soon discover that
some design aspects are more closely related to one another then to other
aspects. These “natural” collections of aspects seem to be characteristic for
a particular class of applications and it therefore suggests itself that these
empirical decompositions capture the nature of an application class quite
well. For these reasons, my personal idea of a view is therefore to see a view
as an collection of knowbbles that cross-cut functional boundaries as well as
different representations.
To illustrate this property, recall Figure 3.2 from Section 3.1.3 where I

have said that a software system is usually described using several (ideally)
isomorphic representations. In Figure 4.6, I have extended the original figure
by adding four views that vertically cross the two representations of the target
system. Views are thus a more general concept of grouping things together
under a common semantic concept then knowbble groups alone and extend
the original idea of linking related aspects of the system together.

4.3 Views 105

shared
knowbble

View B

View A

Design Implementation

Fig. 4.7. Knowbbles
and Views

Ideally, the target system can be decomposed in several independent views
with well defined interfaces. In Massive, each view represents a set of con-
ceptually linked knowbbles, a view is thus a projection of the design onto a
particular subject. This interpretation is supported by results from program-
ming experiments in cognitive psychology were it was found that different
abstractions (views) are used for different sub-tasks of the software develop-
ment process [Pennington and Grabowski, 1990]. A collection of views that
achieves a logical decomposition of the target system is called a view system,
the interfaces between the views are modeled as explicit connections between
views by the use of so-called shared knowbbles. Shared Knowbbles belong to
two or more views at the same time and represent the interface between their
parent views.
The basic ideas are illustrated in Figure 4.7. View A (indicated by the

dark grey squares and circles) and view B (indicated by light gray) have a
shared knowbble in the upper right corner that indicates that these two views
jointly determine or depend on a particular entity of the implementation.
It is important to note that the property of a knowbble to be shared

between several views is not inherited by knowbbles that refine the shared
knowbble. As illustrated in Figure 4.8 for a knowbble that is shared between
two views and that is refined into two new knowbbles, the new knowbbles can
(a) belong to one of the views that share the parent knowbble, (b) belong to
different views (c) can be shared between the views or (d) can be shared with
a third view. The non-inheritance of the “shared” property of a knowbble
ensures the proper encapsulation of the abstractions within the knowbble
and is necessary to maintain the separation-of-concern among the views as
far as possible.

106 4. The Conceptual Framework of Massive

(c) (d)

(a) (b)

Fig. 4.8. Shared Knowbbles and Knowbble
Refinement

4.3.2 View-Oriented Analysis

In [Sommerville, 1995], view-oriented analysis as it is shown in Process
model 9 is described a two-step iterative process that is related to viewport
analysis [Finkelstein and Fuks, 1989] and [Kotonya and Sommerville, 1992].
In the first step of a view-oriented analysis, the analyst will try to identify

potential views. A technique that has shown to be quite effective for this
task are simple brainstorming sessions were every aspect that comes to mind
and that is related to the problem area should be written down. Customers
and end users should participate in these sessions as far as possible because
their input is very important for starting with the right thing. In the next
phase of the view analysis, the aspects that have been identified during the
brainstorming sessions are grouped together according to their conceptual
distance. Obviously, this is a fuzzy process as there is no real measure that can
be applied to decide how related two aspects are. Nevertheless, it is usually
possible to allocate each aspect to a particular conceptual abstraction and
these abstractions are then the views that separate the various aspects of
the system. Aspects that cannot be allocated to a particular view or that
could be allocated to several views at the same time are usually a sign for
a missing view. Furthermore, aspects that have been overseen earlier may
become obvious later. Therefore, the entire process is iterated until a stable
state is reached. A general rule in the view-oriented analysis process is that
the granularity of the resulting view system should neither be too coarse nor
too fine.
In the previous paragraph, I have explained view-oriented analysis as it

would be done for a particular problem under consideration. But this is only
one aspect where view-oriented analysis can be applied successfully. As I have
said above, it is often possible to find generic view systems for entire classes of
applications and here, view-oriented analysis can be used as a tool to analyze
such an application class in order to find a generic view system that covers
most systems in that class. In the next section, I will present such a generic

4.3 Views 107

Process Model 9 View-oriented Analysis

1. View identification
2. View structuring
3. Iteration

Message
Types

Role
Assignment

Sensors
Effectors

Agent
Architecture

Message
Transport

Role

Interaction

Non-functional
Requirements

Error
Handling

Society
External

Components

User
Interface

Protocol
Specification

Knowledge
Representation

ResponsibilitiesCapabilities

Fig. 4.9. Example for a Generic View Analysis

view system for multiagent systems that was found during the analysis of
several multiagent applications.
As an example for the view-oriented analysis, consider Figure 4.9 where

I have depicted an excerpt of the analysis map that lead to the generic view
system for multiagent systems. According to the previously explained process
model, this analysis map is the result of a brainstorming session for the
view identification process. In the second step of the view-oriented analysis,
the relevant aspects of the system under consideration are grouped together
according to their semantic relation. In Figure 4.9, for example, the terms
role, role assignment, capabilities and responsibilities are closely interrelated
and are thus grouped together under the overall concept of a role view onto
the system. Another example is the interaction view that covers things such
as protocol specifications, message types and message transport. These initial
groupings are then extended in subsequent iterations of the process when new
aspects are discovered either by adding to existing concepts or by introducing
a new general concept.

108 4. The Conceptual Framework of Massive

Task Roles Agents

Who

Entities

Large Small

Dynamics

Organization

How

Interaction Plans Capabilities

Where

Structure

What
Collaboration Services

Society Acquaintance

Fig. 4.10. Coverage of MAS Models

The major point in developing a general purpose view system for mul-
tiagent systems is to take specific applications and to abstract away from
domain specific aspects while preserving the generic ones. The careful anal-
ysis of various application that are discussed in this book has finally lead to
the generic view system that I shall present in the next section.

4.3.3 A View System for Multiagent Systems

Views are a general concept to arrange knowbbles with respect to a logical
decomposition of the application class and I will now instantiate the general
framework for the application class of multiagent systems. Before doing so,
however, I will define some basic requirements that the resulting view system
should comply to. First of all, the view system should help the designer to
analyze the system with respect to the four fundamental questions from Sec-
tion 3.4.1: what, where, who and how? However, the focus of these questions
is very broad and thus we need a more fine-grained conceptual framework
that separates the knowbbles of the target system as far as possible and that
covers all relevant aspects of the target system. In order to develop an idea
about the nature of an ideal view system, we shall return to the software
development methods for multiagent systems that were discussed in Section
3.5.3 and review the product models that are proposed by those methods.
Each of the presented approaches suggests several (sub-)models on either the
analysis or the design level that deal with a particular aspects of the target
system. Together, these (sub-)models constitute the full product model. All of
the presented approaches take a model-oriented point-of-view that assumes
a reasonable degree of independence between the models, sometimes even
viewing the sub-models as being completely independent of each other and
thus able to being worked on in parallel. However different the names and
the coverage of the sub-models may be, they can all be classified according
to the following scheme that is illustrated in Figure 4.10.

Entity models describe the fundamental entities that make up the target
system and are thus concerned with more static aspects of the system. Com-
mon names for these models are either ”Task” model for more fine-grained
models, or ”Role” or ”Agent” model for the description on a higher level of
abstraction. While some approaches make a clear distinction between these

4.3 Views 109

two models, others mix them up. Sometimes, architectural decisions such as
an inheritance hierarchy are included in these models as well. Furthermore,
while the concept of roles appears in many of the models, it usually refers to
different ideas in each of them.

Dynamics models, on the other hand, are intended to capture the dy-
namic aspects of the target system on various levels of abstraction and can
be divided into two distinct classes. Models in the first class describe the
dynamics-in-the-large of the multiagent system and are usually referred to
either as ”Interaction”, ”Co-operation” or ”Collaboration” model. Models of
the second class are usually more fine-grained and describe the problem solv-
ing mechanisms of individual agents. Common names for these models are
”Capabilities”, ”Services” or ”Plans”.

Structural models, finally, are used to either to describe the basic structure
of the target system in terms of the connections between the agents or the
knowledge an agent has about other agents, but also to describe the organi-
sational context of the target system. The models of the first class are called
”Society”, ”Organisation” or ”Acquaintance” models whereas the others are
referred to as ”Organisation” or ”Context” models.
Using the product models of the multiagent specific software develepment

methods as guideline, we can derive the following requirements for a view
system for multiagent systems.

Separation Separation in this context means, that the view system should
support “separation of concern”, i.e. changes in one part of the system
should affect as few other parts of system as possible. In the knowbble
oriented approach I have presented in the previous section, this property
can be expressed by using as few shared knowbbles as possible. Gener-
ally speaking, the view system should provide a high cohesion among
the knowbbles that are grouped together in the view and achieve a low
coupling with other views.

Coverage The view system must be able to cover all aspects of the target
system. For example, the view system should reflect the fact that the
target system is not developed or used in isolation but rather in a well-
defined development and operational context. Thus the view system must
allow to specify and model not only the properties of the target system
but also the properties of the environment of the target system.
Furthermore, the view system must allow the designer to specify func-
tional as well as nonfunctional properties of the target system.

Flexibility The view system should allow the designer to model a broad
range of multiagent systems ranging from multi-robot applications to sys-
tems of directly communicating software agents. Furthermore, the view
system should not be limited to a particular technology, e.g. a specific
agent architecture or a particular agent framework.

Size The size of the view system is a crucial factor with respect to accept-
ability in the development community. If the system is too fine-grained

110 4. The Conceptual Framework of Massive

View

Society

View

Interaction

View

Environment Task
View

Architecture System Role
ViewView

View

Fig. 4.11. Massive

Views

it is likely to be too complicated to be used. If, on the other hand, the
model is too coarse-grained it will not be used because it provides no
added value to the designer in comparison to an unstructured approach.

Naming The names that are used within the view system should be sugges-
tive, i.e. they should cover the semantic attributes of the objects referred
to as far as possible. They should also be distinguishable in a way that
the designer is able to clearly associate a particular group of attributes
with each view.

The view system that I will present now has matured over several years
during our work on the design and implementation of multiagent systems.
As shown in Figure 4.11, the system consist of seven views that are briefly
described in the following paragraphs. A full description of each view together
with the application of the views to a case study are presented in the next
chapter.

Environment view In this view, the environment of the target system is
analyzed from the developers perspective as well as from the systems
perspective. These two perspectives usually differ as the developer has
global knowledge whereas the system has only local knowledge. In the
RoboCup domain [Noda, 1995], for example, the developer has access to
the complete state of the system and its environment and this state is
completely deterministic from this point-of-view. From the perspective

4.3 Views 111

of the individual agent within the system, on the other hand, only parts
of the environment are accessible and the state transitions appear to be
nondeterministic because of ongoing activities that cannot be perceived
by the agent.

Task view In the Task view, the functional aspects of the target system
are analyzed and a task hierarchy is generated that is then used to de-
termine the basic problem solving capabilities of the entities in the final
system. Furthermore, the nonfunctional requirements of the target sys-
tem are defined and quantified as far as possible. Note that this view
does not assume that a multiagent approach is used for the final system
and therefore provides a rather high-level analysis of the problem.
In the case of a compiler application, for example, the basic functional re-
quirement is that the system translates a program specified in a high-level
language to a particular assembly language. The quality of the resulting
code or the maximal tolerable time for the compilation are nonfunctional
requirements and the basic problem solving capabilities are for example
lexical analysis or code generation.

Role view This view determines the functional aggregation of the basic
problem solving capabilities according to the physical constraints of the
target system. A role is an abstraction that links the domain dependent
part of the application to the agent technology that solves the problem
under consideration. In my view, an agent consists of one or more role
descriptions and an architecture that is capable of executing these role
models which makes it important to aggregate the basic capabilities ac-
cording to physical constraints.
In a robotics application for a storage area, for example, we may find
robots that are capable of carrying containers from one area to another
and others that are capable of stacking containers onto each other. There-
fore, the roles of “carrier” and “stacker” cannot be assigned to a single
agent because of the physical constraints of the robots unless a third sort
of robot exists that can execute both basic problem solving capabilities.

Interaction view Interaction is a fundamental concept for a system that
consists of multiple independent entities that coordinate themselves in
order to achieve their individual as well as their joint goals. In this view,
interaction within the target system is seen as a generalized form of
conflict resolution that is not limited to a particular form such as com-
munication. Instead, several generic forms of interaction exist that can
be instantiated in a wide variety of contexts. The developer is encouraged
to analyze the target problem with respect to the applicability of these
generic forms before designing new forms.
The most popular example for interaction is of course a communication
protocol, simply because communication protocols have been studied for
quite some time. However, multiagent systems that simulate physical
environments or real physical multiagent systems such as robots or ma-

112 4. The Conceptual Framework of Massive

chines have many other possibilities of interaction besides communication
and these forms of interaction must be allowed for in a general purpose
method as well.

Society view A society is a structured collection of entities that pursue a
common goal. The goal of this view is to classify the society that either
pre-exists within the organizational context of the system or that is de-
sirable from the point-of-view of the system developer. According to this
classification and to well defined quality measures for the performance of
the target society that depend on application specific aspects, a society
model is developed that is consistent with the roles within the society
and that achieves the defined goals.
To illustrate how the quality measure affects the desirable society struc-
ture, consider, for example, Internet trading. In order to achieve the best
trade, the number of participants in the trading process should be rather
high in order to increase the chance of finding a profitable trade. On the
other hand, a high number of participants also increases the computa-
tional and communicational overhead and thus a clustering of trading
agents would increase the communicational and computational efficiency
of the system. The final structure of the agent society (flat or clustered)
thus depends on the quality measures (quality of the solution vs. effi-
ciency).

Architecture view The Architecture view is a projection of the target sys-
tem onto the fundamental structural attributes with respect to the sys-
tem design. The major aspects that are dealt with in this view are the
system architecture as a whole and – due to the size and complexity of
this particular aspect – the agent architecture. The system architecture is
described according to various aspects and includes things such as agent
management or database integration. The required agent architecture is
characterized according to the requirements of the problem to be solved
and it is strongly recommended that the system developer should at first
try to select one of the numerous existing architectures before trying to
develop a new architecture from scratch.
An important aspect that has to be dealt with in this view is to find
the appropriate segregation between agents and objects. Just because
agents provide a means for structuring a problem does not mean that
they are necessarily the best means to do so [Collins and Ndumu, 1998].
Sometimes, it is better to implement particular abstractions as ordinary
objects and thereby increase the system performance by avoiding the
inevitable overhead associated with turning an object into an agent.

System view This view, finally, deals with systems aspects that affect sev-
eral of the other views or even the system as a whole. The System view,
for example, handles the user interface that controls the interaction be-
tween the system and the user(s) whose the task specific aspects are
usually the input specification and the output presentation whereas task

4.3 Views 113

Delete
Society
View

Add
Legacy
View

Fig. 4.12. A View System Tree

independent aspects deal with the visualization of the system activities in
order to enable the user to follow the ongoing computations and interac-
tions. Other aspects that are described in this view are the system-wide
error-handling strategy, performance engineering and the system deploy-
ment once it has been developed.

According to the previously posed questions on the general nature of a
product model and the classification illustrated in Figure 4.10, we can see
that the Task view models what the system should do, the Environment view
describes where the system should perform its tasks, the Role view defines
who should do what and the Interaction, Society and Architecture views,
finally, define how the tasks should be executed.
However, the view system shown in Figure 4.11 is not stable over time.

Rather, it is intended as the root of a tree of view systems as shown in
Figure 4.12. The tree emerges from the generic base model by adding view
systems that have additional views or view systems that have one or more
views deleted. Consider, for example, a multiagent system that has only a
small number of agents. In such system, the Society view may be omitted
because of the limited size of the agent society. A followup project may have
similar characteristics as the original project (i.e. few agents) but it may
furthermore need some sort of legacy software. In this case, the Society view
is omitted as well, but also a new view, the Legacy view which deals with the
integration of legacy systems in the multiagent environment, is added to the
view system. The development of the original view system to the new view
system is illustrated in Figure 4.12 by the shaded area.
The tree of view systems reflects the evolutionary idea of the Experience

Factory presented in Section 3.6.2: the initial view system is altered in order
to make it fit the particular needs of a specific project. Then the adapted

114 4. The Conceptual Framework of Massive

Activity 1 Activity 2 Activity 3

(a) sequential

(b) sequential-repetetive

(c) concurrent-repetetive

Activity 1 Activity 2 Activity 3

Activity 1 Activity 2 Activity 3

Fig. 4.13. Models of Iteration

view system is filed away in case that a later project will have the same char-
acteristics as the project for which the view system was originally adapted.
The goal of this constant learning process is to acquire a collection of view
systems that cover a large variety of multiagent application domains.
After this outline of the product model that is used in Massive, I will

now present the process model that uses the view system discussed in this
section.

4.4 Iterative View Engineering

Before we proceed to the process model ofMassive I will explain the origins
of some ideas that have found their way into the iterative view engineering
approach that is presented later. First of all, it is necessary to define what I
mean by iteration. In Figure 4.13, I have depicted three possible approaches
to the general concept. In its sequential interpretation, a process that con-
sists of several activities is called iterative whenever the sequence of steps
is executed one after the other and starting again from the beginning after
the last step in the sequence has been completed. However, although this
interpretation is straightforward and intuitive, it is also very rigid. If, for ex-
ample, only a single activity within the process should be carried out several
times, the other activities must be run through (although with no effect) as
well. Therefore, we might introduce a more flexible iteration scheme that I
would call sequential-repetitive . In this scheme, a single activity within a

4.4 Iterative View Engineering 115

t1 t2

Part 1

Part 2

Part 3

Snapshots

Process C

Process B

Process A

B2

C2

A1 A2 A3 A4 A5

B6B5B4B3B1

C1 C3 C4 C5

Fig. 4.14. Micro Pro-
cesses

sequence of activities can be executed several times before proceeding to the
next activity. Although this scheme adds some flexibility to the initial idea,
it is still not optimal. For example in a case where some of the activities are
independent from each other, a strict sequential interpretation of the order-
ing of activities unnecessarily delays the overall completion time. Therefore,
I favor a third interpretation of iteration that I call concurrent-repetitive. In
this form, the sequence of activities is worked through in the specified order.
However, instead of completing an activity to its full extend before proceed-
ing, the activity is simply spawned off the main chunk of processing and is
worked on as parallel thread. Following activities can then be spawned off the
main track as well an proceed unless there arises a resource conflict with an
activity that has been started earlier. In this case, the second activity is put
on hold until the first activity has is completed and the resources are freed.
This, in my view, most general interpretation of an iterative process model
is the conceptual basis of the view engineering process of Massive.
Generally, iterative view engineering is a product centered software engi-

neering process model that combines Round-trip Engineering and Iterative
Enhancement discussed in Sections 3.5.2 and 3.5.1, respectively. However, the
iterative enhancement approach that was presented in Section 3.5.1 assumes
that all artifacts of the model are constructed with the same process model.
This is not always optimal. Therefore, I propose an extension that sees the
Iterative Enhancement as a macro process that encapsulates several micro
processes that are used to construct individual parts of the model. This idea
is illustrated in Figure 4.14 which shows a product model that consists of
three parts where each part is iteratively constructed with potentially differ-
ent process models. Part 1 of the model is constructed according to process
model A which consists of 5 different activities, part 2 of the model is con-
structed according to process model B with 6 activities and finally part 3 that
is constructed according to process model C with 5 activities. The vertical

116 4. The Conceptual Framework of Massive

1

2

3

4

5

6

fail

fail

enhance enhancedesign implementation

analyze

construct

Fig. 4.15. Iterative View engineering

boxes represent snapshots of the entire model at times t1 and t2, where the
parts of the model are in different stages of the processes that are used to
construct the respective artifacts.
Combining these ideas into a concurrent-repetitive model as outlined

above, results in the Iterative View Engineering model shown in Figure 4.15.
The Round-trip steps are oriented along the horizontal axis of the figure and
the Iterative Enhancement steps are depicted on either side of the figure.
The Iterative View Engineering process model is the following: Initially,

the design and the implementation are empty. In a first cycle of Iterative
Enhancement (➀), the software engineer specifies the first version of the
design probably by using different micro models for each view.
Note that it is not compulsory for the designer to work through the views

in a predefined order. Independent parts of the design can be worked on in
parallel, i.e. several micro processes can be active at the same time. How-
ever, experience suggests especially in early stages of a project that a cyclic
ordering is quite useful. In the following step (➁), parts of the initial de-
sign are implemented. If an error occurs during the construction phase, the
design has to be refined (➂) until it can be implemented. Next, the initial
implementation is tested. During the test phase, it often turns out that the
design specification was incomplete (even for the parts that were generated)
or wrong. In this case the implementation is changed or enhanced (➃) in
order to meet the intentions of the initial design. After the test and enhance-
ment phase of the implementation is complete, the results must be integrated
into the design during an analysis step (➄). If the implementation cannot be
reverse-engineered (e.g. because the changes of the code are incompatible with
some basic requirements of the design), e.g. because the expressive power of
the modeling language is too limited for a particular feature of the imple-

4.5 Putting It All Together 117

store retrieve store retrieve

fail

enhance enhancedesign

analyze

construct

implementation

Experience Factory

fail

Fig. 4.16. The Massive Method

mentation, the implementation must be changed (➅) in order to comply to
the modeling language. After this step, the next cycle is executed until the
entire system is fully implemented.
The advantages of this life cycle model are that it can deal with an incom-

plete problem specification because of the iterative enhancement approach.
The approach is also useful for early risk detection because parts of the design
are incrementally implemented and can direct the project managers view to
critical regions.

4.5 Putting It All Together

Now that we have seen the individual concepts and entities that are part of
the Massive method, it is time to assemble these fragments into a coherent
picture as shown in Figure 4.16 that captures the overall structure of the
Massive method: the product model that was described in Section 4.3 is
integrated into the process model from Section 4.4 which is itself embedded
into the framework of the Experience Factory outlined in Section 3.6.2. The
resulting overall development model is given in UML notation in Figure 4.17
and a textual description is provided in Process model 10.
The core of the Massive method is the view system that was outlined

in Section 4.3 and that will be discussed in detail in Chapter 5. The view
system is the conceptual basis for a wide range of product models that are

118 4. The Conceptual Framework of Massive

Fig. 4.17. The Massive Method (UML)

developed and refined throughout the software projects that are carried out
according to the suggested process model. The main idea of the process model
is an Iterative View Engineering approach that is itself based on Iterative
Enhancement and Round-trip Engineering. A macro process encapsulates
several small micro processes that are used for individual activities within
the design process for a particular view and that can be executed in parallel.
In Section 5.4, for example, we will discuss a micro process model for

the role modeling activity within the design of the Role view. Such a nested
process model was also suggested in [Booch, 1996] but there only a single
micro process model is embedded into the macro process.
The macro model as well as the micro models of the Massive method

are in no way fixed for the entire lifetime of the project model, they are also
subject to changes and refinements during the course of time. In order to
preserve these and to make them accessible to others, the process model and
the product model are both embedded into a larger organizational structure
called the Experience Factory. The Experience Factory provides the formal
framework for a permanent learning process that takes place over project
boundaries and that eventually models the multiagent experience of an orga-
nization in terms of specific product and process models for various domains.

4.5 Putting It All Together 119

Process Model 10 Massive

1. Select View In the first step of the Iterative View Engineering process, the
developer selects the view that will be refined to from the view system that
describes the current state of the development process.

2. [Select micro process model] The micro process model assists the developer
in the refinement of the previously selected view. Usually, the micro process for
a particular view is selected upon the first iteration of the macro process and
remains fixed until the end of the development process. It is, however, possible
to change the micro process that is used for a view when it turns out, that the
initial decision was not adequate.

3. Check Experience Base Before a view is initially developed or refined, the
Experience base is checked for packages that contain knowledge about artifacts
with similar specifications. If one or more of such packages are found, the results
that are stored in these packages is adapted to the specific needs of the new
problem and reused to construct a solution for the problem in question.

4. Apply In this step, the previously selected micro process model is applied to
the selected view in order to generate the first version of the view or to refine an
existing version either from a previous iteration or from the Experience Base.

5. Evaluate The current version of the view is evaluated according to well-defined
quality measures. If the quality is not sufficient, the micro process is re-applied
to the view until the quality standards are met.

6. Implement If the view has reached a sufficient degree of maturity, it is trans-
formed into executable code. In this step, the Experience Base is used for the
second time in order to find knowledge packages on the code level that can be
reused for the implementation. If no matching code fragments are found, the
implementation must be started from scratch.

7. Test The goal of the test phase is to ensure that the code that has been
constructed in the previous step complies to the specifications that are captured
in the design.
a) Select test case The test cases are specified in features that are associated

with each view. The Test Engineer selects one of these features for each
round of testing.

b) Run test Running a test means to set up the system environment and
system state according to the test case specification and then executing
the code. The results of the test execution are the analyzed to discover
errors in the implementation.

c) Adapt If the results obtained in the previous step differ from the expected
results as specified in the test cases, the code must be changed until the
results from re-running the test provide the desired result. If the results
match the specifications, the test phase is complete.

8. Re-engineer The test phase of the system can result in changes of the code
that are not captured in the design. Thus, this step aims at identifying these
differences and adapting the design in such a way, that it adequately describes
the current code of the system. This step is necessary to ensure consistency of
the design and the code.

9. Iterate If not all specifications are implemented and have passed the quality
checks, the entire process is repeated from the first step.

10. Update Experience Base After the completion of the entire process, the
Experience Base is updated according to the new experiences that were made
during the development of the new system.

120 4. The Conceptual Framework of Massive

4.6 Summary

In this chapter, I have presented the basic ideas of theMassive development
method such as knowbbles that represent conceptual or physical entities, e.g.
design decisions or system components. Knowbbles are conceptually linked
into views that constitute a projection of the complete model onto particular
aspects. Iterative View Engineering was then presented as the process model
that is used to construct the product model built upon these views. The
overall framework of the entire development process is the Experience Factory
which supports systematic learning over project boundaries.
In the next chapter, we will focus on the view-oriented product model that

was already outlined in this chapter. Each view will be discussed in detail
and the basic ideas will be illustrated using the TCS/MAS system as a case
study.

5. Massive Views

The product model ofMassive is the core of the entire method. It allows the
system designer to break the target system down into several views that con-
centrate on particular aspects of the system and abstract away from others.
In each of the following sections, we will at first discuss the general nature
and the intended scope of a view as well as a number of features and design
patterns that belong to a view. However, the features and patterns that are
presented are by no means an exhaustive collection, they rather represent the
current state of my personal experience in designing multiagent applications.
According to the basic idea of the Experience Factory, the potential user of
the Massive method is encouraged to add new aspects that are necessary or
to remove aspects that are not important in a particular context. In each of
the following sections, the general considerations are applied to a case study
in order to demonstrate how the theoretical concepts are used in a practical
situation.

Before I explain the views that constitute the view system of theMassive

method in detail, however, I shall clarify how these views relate to multiagent
specific questions. Any of the subsequently discussed views covers some agent
or multiagent specific aspects of the target application, but the degree varies
greatly over the set of views. In Figure 5.1, I have sorted the views of the
Massive Product model according to their relation to multiagent technology.

The most general and thus most technology independent view is the Task
view because it models the system from a purely functional point-of-view. The
System view and the Environment view also deal with very general properties
of the target system and contain only few multiagent specific features. The
Architecture view in the middle can be interpreted as the link or the interface
between the more technology independent views and the more specific views.
The first view in the latter class is the Role view that explicitly models the
agents and their properties, followed by the Interaction view that captures
the ongoing inter-agent processes. The most multiagent specific view, finally,
is the Society view that explicitly deals with collections of agents.

Although it seems to be a natural idea to construct a software product
by proceeding from the general to the specific views, this approach is not the
best for building the target system for the reasons explained in Chapter 4.
This is simply due to the fact that some decisions in a more general view are

J. Lind: The MASSIVE Method, LNAI 1994, pp. 121-204, 2001.
 Springer-Verlag Berlin Heidelberg 2001

122 5. Massive Views

Sp
ec

if
ic

y

Role View

Interaction View

M
ul

ti
ag

en
t

Society View

Architectural View

Environment View

System View

Task View

Fig. 5.1. Views and Multiagent Systems

Table 5.1. Views and the Minimal SE Process

Task Environ-
ment

Role Inter-
action

Social Archi-
tecture

System

View View View View View View View

Analysis X X X

Design X X X X X

refinements of aspects of a more multiagent specific view. For example, the
roles and interactions in the target system constitute design decisions that
have major influence on the architecture of the final system.

Furthermore, some of the views are more closely associated to the analysis
phase of the software development process while others belong more to the
design phase. In Table 5.1, I have marked the respective views of theMassive

product model according to the phase of the minimal software development
process model introduced in Section 3.4 that they are more closely related
to. The relations that are indicated in the table, however, are not exclusive
as a particular view may contain analysis and design aspects at the same
time. According to the principle of selecting the best strategy for a given
problem, the views can thus be worked on in any order, switching back and
forth between views as necessary.

Before we discuss the views that constitute the solution for the problem
under consideration, however, I will provide a brief introduction to the prob-
lem that is used in the case study to illustrate the basic properties of each
view.

5.1 A Brief Introduction to Train Coupling- and
Sharing (TCS)

Efficient transportation — be it of persons or goods — is a key issue in todays
industrial world [Carroué, 1997]. Because of the immense amount of trans-
portation tasks, it is necessary to use the available resources most effectively.

5.1 A Brief Introduction to Train Coupling- and Sharing (TCS) 123

regional freight center

local freight center

interregional freight center

Fig. 5.2. Hierarchical
freight haulage

Thus, computer aided — or entirely controlled — scheduling systems are key
technologies not only for telematics.

Conventional wagon load traffic as it is performed today is shown in Fig-
ure 5.2: a company that wants to ship something via rail to its customers de-
livers the freight to the local freight center (usually a railroad station) where
it is stored until enough freight from other companies has arrived to justify
a train to the regional freight center. At the regional freight center, wagons
from other local freight centers that have the same direction are assembled
and sent to the next interregional freight center where another re-assembling
process takes place. The decomposition of the trains is achieved in reverse
order.

This approach has some serious drawbacks. First of all, the wagons of in-
dividual customers must wait at the local freight centers until enough freight
is delivered to make a train to the next local freight center profitable. Sec-
ond, the re-assemblance of trains in regional and interregional freight centers
is a very time consuming process that introduced additional delays in the
producer-to-customer route.

An alternative approach [Kracke et al., 1995], [Fabel, 1996],
[Voges and Mierau, 1997] to the classical freight transport process uses small
railroad transportation modules (e.g. the CargoSprinter [Windhoff AG, 1996])
instead of conventional trains. Whereas a normal train is made up of one
locomotive and several freight wagons, a transportation module consists of
two power units on either side of the module and up to three permanently
coupled intermediate vehicles with a fixed number of loading spaces. Thus,
a transportation module is a single unit of limited size. When a company
wants to deliver some freight to a customer, it orders a transportation
module at a local freight center and loads its goods onto this module and
the module itself is then responsible to find its way through the railroad
network.

A transportation task is served by a transportation module and we as-
sume that each task can be served by a single module, i.e. there is no need
to hook two or more modules together to serve a single task. Vice versa, we

124 5. Massive Views

Fig. 5.3. Train Coupling and Sharing (TCS)

assume also that a module cannot serve more than one task at a time. All
tasks occurring in the system are transportation requests in a railroad net-
work; a network is graph consisting of several nodes connected via so-called
location routes. In the current version of the system, an abstracted map of
the German railroad network with approximately 250 nodes and 350 links is
used to simulate the underlying railroad network.

Whenever the system receives a transportation task, it assigns the task
to a free module which in turn computes the path from the origin to the
destination node with a shortest path algorithm. The module then rents the
intermediate location routes for a certain time window from the network
manager. The time window for each location route is uniquely determined by
the earliest departure time and the latest arrival time of the transportation
task. The problem is now, that a location route in a railroad network cannot
be used by two independent modules at the same time. Either a route is
blocked while being used by a single module or two (or more) modules share
a route by hooking together at the beginning of a location route and splitting
up afterwards as shown in Figure 5.3. In order to use the underlying railroad
infrastructure most efficiently, the railroad modules should share as many
location routes as possible while taking care of their local constraints.

The main advantage of this approach is that it avoids a central planning
authority that schedules all transportation modules. Instead, each module
is autonomous and tries to achieve its goal, which is to deliver its freight
to some destination node in the network. Thus, each module performs local
optimization of the network throughput by sharing as many location routes
with other modules as possible. The local optimization process of all modules
eventually leads to a high, though usually only suboptimal, degree of resource
efficiency. Besides this major advantage, a decentralized approach implies less
coupling operations during the train composition process, a high degree of
customer accessibility and lower costs because of the effective location route
usage.

The basic idea of the TCS approach for freight transportation in a railroad
network that have been outlined in this section are a good example for using
multiagent systems technology in a real world problem. I will therefore use
the TCS/MAS system throughout the next sections to illustrate the basic
ideas of each view and develop the fundamental design of the system in the
course of this chapter.

5.2 Environment View 125

Environment

System
Developer

Fig. 5.4. Perspectives on the
Environment

5.2 Environment View

The goal of this view is to model the environment of the target system from
two distinct points-of-view as shown in Figure 5.4. First, the environment will
be analyzed from the perspective of the developer and a general characteri-
zation of the environment as it appears to the developer will be generated.
Second, the environment will be described from the systems point-of-view in
terms of input/output or sensor/effector specifications.

5.2.1 Developers Perspective

This part of the Environment view describes the environment of the multi-
agent system from the developers point of view. The main aspects are the
organizational context in which the system will be used, the general char-
acteristics of this context as far as it is relevant for the application and a
technical assessment of the runtime environment of the operational system.

Organizational Context. The first step in modeling the environment of
the target system is to clarify the organizational context that determines how
and where the target system should be used within the customers organiza-
tion. If, for example, the target system is meant as a prototypical evaluation
of a new approach or some other technology that will not be used in an op-
erational context, it surely directs the focus of the final design onto more
functional aspects then onto nonfunctional aspects such as stability or user
friendliness.

It is hard – if not impossible – to specify concrete rules of how to specify
the organizational context because the relevant concepts are extremely fuzzy.
Therefore, the major contribution of organizational context specification in
this view is to provide the designer with a feeling of how the system should
be used and what is important with respect to the field of application of the
target system.

In order to characterize the development context of the TCS/MAS system,
we will at first analyze the customers ideas of what the system should be
used for. According to the Deutsche Bahn AG, the TCS/MAS is intended as
a strategic tool to evaluate the basic characteristics of Train Coupling- and

126 5. Massive Views

Sharing. “Strategic” means, that the system is not intended to be used in an
operational context in order to plan and organize freight transport according
to the TCS approach. Instead, the system should be used to identify the
relevant parameters and their optimal settings according to a given set of
quality measures (e.g. cost of a particular schedule or average number of
coupling activities).

Furthermore, the TCS/MAS system was also developed to evaluate the
technology behind it, namely multiagent techniques for distributed problem
solving. This evaluation is done from the functional point-of-view, i.e. the
customer wants to find out whether multiagent technology can solve the TCS
specific scheduling problem or not. From the nonfunctional point-of-view, the
customer is also interested in the question of how good the multiagent solution
is. The quality of the solution depends not only on functional measures such
as overall cost, but also on nonfunctional quantities such as response time to
a new task.

The necessity to evaluate the TCS approach in general results in many
constraints towards the organizational context of the TCS/MAS system be-
cause the system is required to obey the most important railroad operation
regulations. These regulations affect the network specification of the underly-
ing railroad network as well as specifications for coupling activities, maximum
train lengths or maximum train speeds. A special case is resource allocation
within the TCS/MAS system. The resources that must be scheduled among
the competing modules are the location routes between any two nodes in the
network. For these location routes, a predefined schedule exists that must
not be violated by the resource assignment algorithm. Furthermore, the as-
signment algorithm must respect the minimal distance that two trains must
keep when they are using the same location route.

Characterization. [Russell and Norvig, 1995] propose a very general
scheme to describe the environment of agent-based applications that uses
five dimensions to capture the characteristic features of the environment.

accessible vs. inaccessible In an accessible environment, the agents can
perceive the full state of the environment at any time. In a an inaccessible
environment, on the other hand, only partial information is available to
the agents.

deterministic vs. nondeterministic This feature describes how the
agents perceives the development of its environment, i.e. whether the
next state of the environment is completely determined by the current
state (as perceived by the agent) or not.

episodic vs. nonepisodic An episode is a single perception-action cycle
performed by the agent. In an episodic environment, these cycles are un-
related, i.e. the action of one cycle does not have any impact on the next
cycle. Thus, episodic environments are much simpler then nonepisodic
environments because they do not need the ability of the agent to plan
ahead.

5.2 Environment View 127

static vs. dynamic In a static environment, the environment cannot
change while the agent is not acting (i.e. while the agent is deliberat-
ing) whereas this assumption does not hold in a dynamic environment.

discrete vs. continuous In a discrete environment, the agent has distinct,
clearly defined percepts that (partially) describe the environment. This
is not the case in a continuous environment.

These features can be used to characterize a broad range of environ-
ments. The physical world, for example, is inaccessible, nondeterministic,
nonepisodic, dynamic and continuous, whereas a virtual world that is inhab-
ited by software agents is also nondeterministic, nonepisodic and dynamic
but it is usually accessible and discrete.

Characterizing the environment according to the above features can help
the designer to anticipate basic problems that are likely to occur in a par-
ticular class of environments. Dynamic environments, for example, require a
much more sophisticated reasoning mechanism that is capable of integrating
newly perceived state information in the ongoing reasoning process.

Using the characterization scheme given above, we can classify the envi-
ronment of the TCS/MAS system as nonaccessible because no single entity
has a complete model of the entire system, nondeterministic because of the
incomplete view of any entity, the entity is not able to predict the next sys-
tem state, nonepisodic because the actions performed in one cycle (forming
of unions out of modules) affects the possible actions of the next cycle, static
because the tasks are integrated one after the other and discrete because of
the granularity of the planning process.

The organizational context and the general characterization of the en-
vironment of the target system usually depend on the particular problem
domain. Another important aspect of the system environment from the per-
spective of the developer that will be discussed in the following section, how-
ever, is domain independent.

Runtime Environment. This aspect of the system environment deals with
technical aspects of the runtime environment of the target system. These
characteristics are often neglected because they are considered unimportant
and could therefore be left out without loosing generality. But this is not
true! The runtime environment can have an enormous impact on he final de-
sign and performance of the system and should thus be explicitly modeled as
early as possible. A good example for the impact of the runtime environment
on the final system is the Teamwork Library discussed in Section 6.1.
The original approach used simulated broadcast messages because physical
broadcast was not offered by the communication platform (Ethernet). It was
assumed that simulated broadcast would do as well. This turned out to be a
mistake because the performance and value of the teamwork approach relied
on the fast transfer of large amounts of data. Thus, the entire system had
to undergo a re-design phase that added mechanisms and protocols for phys-

128 5. Massive Views

ical broadcast. To avoid such expensive error-corrective work, the runtime
environment must be carefully characterized and evaluated.

First of all, the designer must specify the programming model that is
used in the target system. Programming models can be classified according
to their degree of concurrency: a sequential programming model admits for
no concurrency at all; functions are called strictly one after the other. This
kind of programming model does not require synchronization mechanisms
and it is sufficient in case the multiagent paradigm is solely used for de-
sign purposes, i.e. to structure the target system. A pseudo-parallel model,
on the other hand, typically uses light weight processes (threads) within a
single operating system process to achieve concurrent execution of program
fragments. This kind of programming model is well suited for multiagent ap-
plications because it allows for a reasonable degree of parallelism while still
being easy to handle with respect to debugging and traceability. A fully dis-
tributed programming model, finally, distributes the computation space over
several computers connected via a communication network. This model is
quite hard to handle because it often requires complex synchronization and
fault tolerance mechanisms. However, for real world applications, this might
be the only possible choice.

In the next step, the designer has to describe the communication platform
that will be used within the target system. The choices for the communica-
tion platform are usually limited by the choice of the programming model;
a sequential system, for example, will usually be limited to internal com-
munication using ordinary method invocation mechanisms. In the case of a
pseudo-sequential programming model, the choices are broader because such
a programming model usually requires asynchronous message exchange to ex-
ploit the (pseudo-)parallelism provided by using several threads of execution.
Asynchronous message invocation methods are usually not offered by the
programming language and thus the designer must define a method that is
best suited for communication between the entities of the target system. The
widest range of choices, however, is given in the case of fully distributed sys-
tems. The entities can communicate using network protocols such as TCP/IP
or radio transmission protocols such as GSM to exchange messages.

Finally, the choice of the appropriate programming language is an impor-
tant issue. The programming language need not necessarily support a par-
ticular programming paradigm, e.g. object-oriented programming in order to
built a multiagent application. However, a cleaner, more structured code will
be generated if the programming language supports particular features that
are characteristic for multiagent systems.

In the TCS/MAS system, the technical development environment features
a pseudo-parallel programming model because it offers a reasonable degree
of flexibility and concurrency while still being relatively easy to monitor and
debug. The chosen programming language is a functional, constraint based,
multi-threaded language called Mozart [Programming Systems Lab, 1999],

5.2 Environment View 129

[Smolka, 1995] and the communication platform uses Mozart threads to
achieve asynchronous message exchange between the agents. The system plat-
form is Linux .

However, as it was said in the introduction to this section, the developers
perspective is just one aspect that is dealt with in the Environment view.
Therefore, we will now discuss the other main aspect of this view – the
system that is situated in an environment and that somehow perceives and
acts upon this environment.

5.2.2 Systems Perspective

Specific parts of the system may have a very different perception of the envi-
ronment given their physical or conceptual constraints. Usually, the system
(and later the agents) perceive their environment through a number of sensors
and operate on the environment by using effectors. First of all, this very gen-
eral concept of an input/output specification must be clarified with respect
to the characteristic needs and requirements of the target system. Second,
the designer must develop a model of the environment that is internally used
by the agents to represent their environment and to reason about it.

The definition of the mechanisms that enable the entities in the system to
perceive and act upon their environment should be general enough not limit
the choice of assigning particular sensors and effectors to the roles within the
multiagent system defined later (see Section 5.4). In this view, only a general
model of the sensors and effectors that allows the designer to get an overview
of how the systems inter-operability with its environment can be arranged
should be produced.

The model of the sensors and the specification of the individual percepts
then leads to the choice of the data structures that are needed to capture an
internal world model depending on the functional requirements of the target
system. Sometimes, an internal model is completely obsolete [Brooks, 1991]
whereas in other cases the agents must be equipped with a rather fine-grained
model of their environment and their fellow agents.

In the TCS/MAS example, the perception and action possibilities of the
system (and later the agents) are rather limited as it is often the case with
systems of communicating software agents. The agents can perceive all other
agents that are currently active within the system and the only action that
is allowed for an agent is to send a message to another agent. The knowledge
structures that are needed to model the agents knowledge about the environ-
ment are therefore very simple and consist only of a list of peer agents that
are currently active in the system.

130 5. Massive Views

5.3 Task View

The goal of this step in the Massive method is to identify what the target
system should do. We should therefore try not think in terms of “agents”
or “goals” because this could too easily restrict our view for other possible
solutions. Ideally, the result of this step in the method should be the basis
for the decision of the designer whether a multiagent approach is the best
solution for the given problem or not.

As explained in Section 2.4, agents are kinds of abstractions that should
be viewed in a broader context then just under a functional point-of-view.
The functional abstractions that are modeled in this step can spread over
several agents and multiple functional abstractions can be encapsulated in a
single agent. These decisions, however, are not the subject of this view that
only models the basic requirements of the target system.

Requirements analysis is a difficult task, mainly because of the communi-
cation gap between developers and users. In the next section, I will therefore
introduce a technique that was developed to bridge this gap.

5.3.1 Use Case Analysis

Use Case Analysis or Use Case Modeling as, e.g. presented in [Jacobson, 1992]
[Kenworthy, 1997] or [Kulak and Guiney, 2000], is a powerful tool to capture
the system requirements from the point of view of the people that will use the
system after or during it is developed. But even for systems with limited user
interaction, use case analysis can be a valuable means to describe the intended
behavior of the system. In the latter case, however, the name “use case” is
somewhat misleading and can be replaced by a more neutral term such as
in [Booch, 1994] where the term “scenario” is used to capture essentially the
same aspects as in a use case.

Basically, each use case is a very high-level description of what the system
is supposed to do. It is never a means of describing how the intended behavior
can be achieved! Therefore, use cases are not a functional decomposition of
the system but rather a decomposition of system behavior from the users
perspective that can subsequently be refined into a functional specification
of the system behavior.

In the first step of Process Model 11, the end-users of the system to be
developed are identified and separated into user groups. Then, the interac-
tion patterns with the system are described for each of these user groups,
leading to an initial set of use cases. Each of these initial use case is then
informally described first in its normal course of operation and second in
alternative paths according to exceptional situations that may occur. The
informal description should ideally follow and easy scheme such as “The user
does X, the system does Y. Then the user does Z, the system does . . . ”.
Again, the designer must be careful in order not to specify how a particular
system reaction should be provided. After the use cases have been specified

5.3 Task View 131

Process Model 11 Use Case Analysis

1. Identify actors (users)
2. Identify self-contained interaction scenarios (use case)
3. For each use case

a) Define the “normal” course of operation
b) Create additional cases for exceptional situations

4. Identify commonalities between use case and aggregate
5. If not complete, go to 1.

Plan
Task

Run
Contract

Net

Run
Interaction
Protocol

<<uses>>

<<uses>>

Integrate
New

Task(s)

<<extends>>

Fig. 5.5. Use case example from the TCS domain

in an initial description, the designer should try to identify commonalities
between case and eliminate them by generating an extra case that is jointly
used by the others. Similarly, the designer should try to identify <<extends>>
relation between two cases where one of them is an extension of the other.
The entire process is then iterated several times until the collection of use
cases becomes sufficiently stable. In can also be repeated in the course of the
development process as soon as new requirements are identified or when the
details of previously unspecified use cases become obvious.

As an example for a use case analysis, Figure 5.5 shows an excerpt from
the full document that holds the use cases of the TCS domain. In the example,
the user wants to integrate a new task into the existing schedule. To this end,
the system performs some local planning in order to find a valid schedule for
the new task. Optionally, the system can also try to do some optimization
by running the contract net protocol with the new task as the manager and
the other modules as contractors. This dependency relation is expressed by
adding the keyword <<uses>> to the arrow that links two use cases. Also
shown in the figure is an <<extends>> relation between two use cases where
the use case that runs the contract-net protocol is a specialization of the use
case that runs an interaction protocol in general.

5.3.2 Functional Requirements

Functional requirements are a specification of what the system should do.
To obtain a first sketch of the functional requirements, it is often useful to

132 5. Massive Views

analyze the intended workflow in the broadest sense. To this end, he designer
can use the specification of the organizational context that was discussed in
Section 5.2.1. The result of this analysis should be an abstract definition of
the input and output of the system and allow for a precise description of the
system task(s). A potential problem that arises in this context is that many
multiagent system as continuous systems, i.e. systems that doe not simply
transform input data to output data but that continously act upon their
environment. A solution of this problem is to break down the continuous op-
eration into episodes that are defined in terms of the state of the environment
before and after a particular operation. Therefore, even continuous systems
can be described by a functional approach.

A tool for the functional decomposition of the problem to be solved are
task trees that capture the fundamental functional aspects of the problem
domain. A task tree for a given problem is constructed by decomposing the
overall system task into several sub-tasks that are themselves decomposed
until a sufficiently low level of detail. Note that I avoid to talk of “goals” in
this respect for the reasons explained above. The concept of a goal implies the
existence of some entity that pursues the goal and thus leads to an “agent-
oriented view” that I wish to avoid in this early phase through the back-door.

Figure 5.6 shows an example for a task tree as the result of the task
analysis process. The tree describes some of the tasks that may occur in
a mail order company that maintains a stock of goods and a database of
customers that; the tree is embedded into a larger organizational structure
indicated by the dashed line at the top of the figure. One can see in the
figure how a particular task is decomposed into several subtasks, e.g. the
task “Manage Customer” is decomposed into “Manage Address” and “Take
Order”. These sub-tasks can be decomposed further as shown in the Figure.

The construction of the task tree follows the general idea of a hierarchical
decomposition according to functional aspects of the problem domain. The
granularity of the decomposition process depends on the specific problem
but it should not become a specification of a particular algorithm. The task
tree only provides a general picture of the activities that will be present in
the target system, individual algorithms are designed later. The functional
decomposition of tasks can be supported by the use of Structured Analysis
[DeMarco, 1978] or related methods.

From the task decomposition captured by the task tree, the next step is to
derive a mathematical formalization of the problem domain. Mathematical
formalizations are an extremely valuable tool in studying and describing the
transformations performed by any software system and should be used when-
ever possible. To obtain an initial formalization of the problem domain, the
entities of the domain are defined as precisely as possible while abstracting
away from unnecessary details. Then, the functional transformations (tasks)
are expressed in terms of these basic entities. However, this initial formal-
ization of the desired functional behavior is usually not complete nor is it

5.3 Task View 133

Manage
Stock

Order
Supply

Manage
Customers

Manage
Address

Take
Order

Change
Address

Delete
Customer

Fig. 5.6. Example for
a Task Tree

detailed enough to allow for an immediate implementation of the system.
Therefore, the model will go through a refinement process. To achieve a com-
plete model of the desired behavior, several iterations of the entire modeling
process are likely to be necessary because the complete model needs input
from the other views as well as user feedback.

Besides the functional modeling of the behavior of the target system,
it is also important to quantify functional properties of the output (in the
most general sense) of the system. Quantification means that the designer
– ideally together with the user – must identify qualitative features of the
solution that can be quantified by defining appropriate measures to decide
that a solution generated by the systems satisfies particular requirements.
Identifying the features that determine the quality of a solution and defined
measures for these features is sometimes very difficult and should be done in
close collaboration with the user to avoid the risk of designing a system that
does not capture the users intention. This holds especially true in the case of
optimization problems.

One of the most important rules for the functional modeling of the target
system is to avoid any kind of control flow specifications. In this view, it is
not important – sometimes even harmful – to think about how something
has to be done. The goal of this view is solely to specify what is to be done.
Furthermore, it should always be kept in mind that a complete functional
specification is not possible in the first iteration and consequently, the initial
design should not be overloaded by modeling features that show to be of less
importance during the course of modeling the other views onto the system.

I will now illustrate the approach that has been discussed in this section
by applying it to the TCS example. I will start with a workflow analysis of

134 5. Massive Views

Customer Carrier Net Provider

generate Task
Specification

Feasability
Check

Task
rejected

Plan &
Optimize

Check Route
Requests

Book
Routes

Update
Plans

Task
accepted

reject[not feasable]

[feasable]

check routes[valid plan exists]reject[no valid plan]

check failed / replan

check succeeded

acknowledge[booking succeeded]

booking failed / replan

accept

check

Fig. 5.7. TCS Simulator Workflow (UML)

TCS and then derive the task tree that represents the various tasks within
the target system. Then, I will demonstrate how the formalization of the TCS
domain is accomplished.

The workflow of a customer request for a transportation service according
to the TCS approach is shown in Figure 5.7. First of all, the service provider
checks whether the request can be satisfied due to technical constraints (e.g.
if the customer requires a special wagon type, e.g. cooled). If the required
resources are available, the user request becomes a transportation task (or
simply task1) and is added to the task list of the service provider. A task
is served by the service provider by finding a plan that satisfies additional
user constraints such as freight availability or delivery deadlines and that
also minimizes the cost for the service provider. If no plan can be found
that satisfies these additional requirements, the task is rejected by the task
dispatcher. If, on the over hand, a valid plan exists, the service provider must
try to allocate the external resources that are needed to complete the task.
The external resources in our case are the location routes that are used by
the union that serves a particular task. If the resources can be allocated
successfully, the task is finally accepted and scheduled for execution when
the time is up.

The focus of the TCS/MAS system in this scenario is the service provider
which is given a list of task specifications that must be satisfied. The set of
1 Not to be confused with the task decomposition discussed earlier.

5.3 Task View 135

12

10

5

13

11

A

B

D

E

F G

C
6

Fig. 5.8. Example railroad network

tasks is not fully known to the system at start-up time, new tasks arrive dur-
ing the planning process and may require a revision of the already assembled
plan in order to reduce cost. In order to have a more realistic simulation of
the environment, the resource allocation process should be modeled as well.
Furthermore, the system should be capable of simulating the resulting sched-
ule as well as failures that occur during the execution of the schedule such as
location route failures, i.e. the case that an allocated resource is not available
upon plan execution time and a process of dynamic re-planning must take
place.

In Section 5.1, I have introduced the basic ideas of TCS. Recall that
fundamental idea of TCS is location route sharing, i.e. the idea that two or
more modules hook together at the beginning of a location route (or of a
sequence of consecutive routes) and split up afterwards.

For this case study, we shall use the seven node network shown in Fig-
ure 5.8 to illustrate the basic ideas of the TCS/MAS system. The numbers on
the routes in Figure 5.8 indicate the distance between two nodes connected
via a location route. To illustrate the idea of route sharing, consider the fol-
lowing example with two transportation tasks from B to F and from C to
G, respectively. If the two modules serving the respective tasks act indepen-
dently, the transportation costs for the first module are 35.0 units and 29.0
units for the second. If, on the other hand, the two modules decide to coop-
erate and to share the common location route between node D and node E
and assuming that the cost for shared routes are equally distributed among
the participation modules, the transportation cost reduces to 28.5 and 22.5,
respectively.

The computational problem in conjunction with location route sharing is
to identify sets of tasks (i.e. their respective modules) that can share location
routes. The limiting factors are the compatibility of transportation paths and

136 5. Massive Views

Handle
failure

Minimize
global
cost

Monitor
plan

execution

Validate
schedule

Schedule
routes

Handle
Allocation

Request

System
task

Find
joint
plan

Maintain
local

constraints

Find
path Routes

Allocate

Find
local
plan

Find
sharing
peers

Minimize
local
cost

costs

Compute
deletion

Compute
insertion

costs

Fig. 5.9. Task Tree of the TCS Domain

time windows. We shall refer to sets of cooperating modules as unions where
each union is determined by the participating modules.

The functional requirements are now informally given as follows:

1. The system should be capable to plan the union formation process. Union
formation means, that the system is able to find task specifications that
can be combined into larger units according to the TCS approach.

2. The system should be capable of dealing with an incomplete problem
specification.

3. The system should be able to simulate the execution of the resulting
schedule.

4. The system should be able to simulate failure situations such as the
unavailability of a particular resource.

The task decomposition of the TCS/MAS system is shown in Figure 5.9.
The activities in the leaf nodes of the task tree shown in the figure correspond
to the basic problem solving capabilities that will be developed in the course
of the role modeling process described in the next section. The double box
indicates a leaf node that requires the collaboration of several problem solving
entities and that are thus not subject to this view. Joint capabilities will be
dealt with in Section 5.5.

5.3 Task View 137

We will now construct a formal model of the TCS domain that enables
us to define the basic problem solving capabilities more precisely.

Definition 5.3.1 (Time Window). A time window TW is a tuple 〈t, t〉
that consists of a lower bound and an upper bound with t ≤ t.

Definition 5.3.2 (Path). A path is a sequence A1, . . . , An of node identi-
fiers such that there exists a link between any two nodes Ai and Ai+1 for all
i ∈ {1, . . . , n}.
Definition 5.3.3 (Task). A task is a tuple 〈O,D, TW,AT 〉 consisting of
the origin node O and the destination node D, a time window TW that
specifies the earliest possible departure time and the latest allowed arrival
time and finally a time stamp indicating when the task is announced to the
system.

Definition 5.3.4 (Module). A module Mi is specified by its unique iden-
tification number i ∈ {1, . . . ,m} and a tuple 〈P, S, L〉 denoting its current
plan P , the maximum speed S of the module and its length L.

Definition 5.3.5 (Plan). The plan of a module M is a sequence
[PS1, . . . , PSn] of plan steps where each plan step PSi is given by a tuple
〈N,TW,A〉 that consists of a node identifier N , a time window that specifies
the earliest possible arrival time and the latest allowed departure time from
the node and a list A of coupling actions with other modules that must be
executed in the node.

Definition 5.3.6 (Action). An action is a tuple 〈T, P,D, TW 〉 that spec-
ifies the action type T , the peer modules P , the action duration D and the
time window during which the action must be executed.

Definition 5.3.7 (Union). A union Uj is a collection of several modules
Mi0 , . . .Min. Each union has a unique identifier j ∈ {1, . . . , k} and is written
as U i0,...,in

j .
Unions are-meta level concepts; a union emerges when at least two mod-

ules decide to cooperate by sharing location routes and it ceases to exists when
all modules within the union have completed their respective tasks.

Definition 5.3.8 (Failure Specification). A failure specification is a
tuple 〈L, TW 〉 consisting of the location route identifier L and a time window
TW that specifies when the location route is blocked and when it can be used
again.

Definition 5.3.9 (Schedule). A schedule is a sequence of tuples
〈L, TW ∗〉 consisting of the location route identifier L and a sequence of time
windows TWi where each time window specifies when the location route is
used by a train.

138 5. Massive Views

The elements of the data structures are accessed using the dot notation
scheme where the list elements are referenced by their index number. For
example let
[

(NodeId:A, t:10, t:16, actions:nil)

(NodeId:C, t:10, t:16, actions:[(type:join peers:[M2 M3] duration:4

t:11 t:15)])

(NodeId:D, t:10, t:16, actions:nil)

]

be the plan of module M . Then we have M.A.t = 16 or
M.C.actions.1.peers =[M2 M3].

This initial formalization of the basic entities in the TCS domain will be
used later when we define the basic capabilities that are needed by the agents
within the TCS/MAS system. However, although the functional requirements
of a software system are usually predominant in the system specification,
some other aspects need attention as well.

5.3.3 Nonfunctional Requirements

The nonfunctional requirements define meta-level properties of the target sys-
tem, i.e. properties that usually specify additional constraints that cannot be
modeled in the solely functional context. Typical examples for nonfunctional
requirements are the stability of the system, security aspects, portability, ex-
tensibility etc. Nonfunctional requirements often affect a system as a whole.
Because of their global nature, they should be specified only if it is abso-
lutely necessary as they usually impose severe limits on the system design
[Rombach, 1994a].

Because of the fact that the TCS/MAS system is only a prototype, there
are only few nonfunctional requirements of system. The only relevant non-
functional requirement is that the integration of a new task into an existing
schedule should be within a time span of few minutes to make sure that an
operational system that is built upon the foundation of the prototype allows
the task operator to answer to a customer request quickly.

5.4 Role View

Up to now, a characterization of the environment where the system will be
running after it is developed as well as the tasks of the target system have
been specified without committing to a particular technology to solve the
given task. In this section, we will now look at this and start with modeling
the system according to the role concept of the multiagent programming
paradigm as presented in Section 2.4. We will not only discuss the problem
of finding role abstractions given the functional and physical constraints of

5.4 Role View 139

the problem specification, but we will also look at the problem of how to
assign particular role(s) to agents of the target system.

5.4.1 Role Definition

I have already mentioned in Section 2.1.2 that a major problem in the field of
sociology is the delimitation of roles that occur within a society. In the design
of a multiagent system, the software engineer is faced with the problem of role
delimitation as well. He or she is given a functional specification and is the
asked to transform this functional specification into a society of interacting
roles.

In this section, we are concerned with the definition of the functional roles
within the multiagent system, i.e. roles that are defined in terms of the tasks
that must be carried out. A second group of roles in a multiagent system
called interaction roles are prototypical roles that are used in the definition
of interaction protocols that are used within the multiagent system. In the
contract-net protocol [Smith, 1980], for example, the generic interaction roles
manager and biddermust be implemented according to the particular context.
Interaction roles, – despite of their name – however, are not a genuine part
of the role view and are therefore discussed in the Interaction view in Section
5.5.

In the course of defining the functional requirements of the target system,
it is recommended to build a task hierarchy of the problem domain. Usually,
this process leads to a task tree with the overall system task as the root of
the tree that is decomposed into several sub-tasks. The leaves of the tree
are either atomic activities that can be handled by a single problem solver
or they are joint activities that require the collaboration of several problem
solvers. The activities of the second group are handled in the Interaction view
discussed in Section 5.5 whereas the activities of the first group are subject
to this view.

Each of the atomic activities given in the task tree is specified on an
algorithmic level that uses the abstractions of the formal model to describe
a particular problem solving strategy. The basic capabilities that are defined
here will later be combined and used as the basis for the role delimitation
process.

There are three potential ways to achieve this goal. The first ap-
proach is the classical top-down processing of the functional specifications
[Barbucean and Fox, 1995]. The specifications are decomposed into hierarchi-
cal sub-groups and these groups are then declared as the roles. This approach
has the advantage that it is straightforward and that it usually leads to sat-
isfactory results. Unfortunately, the approach assumes that the designer has
the full flexibility in grouping the functionally decomposed units. However,
this assumption does not hold for example in the case of a robotic application
where the physical entities limit or even define the functional grouping.

140 5. Massive Views

Role

functional
grouping

physical
grouping

Fig. 5.10. Hybrid Role
Identification

Therefore, the designer may decide to go the other way round, namely
to follow a bottom-up approach to identify the roles within the system. This
approach [Parunak, 1997], [Parunak, 1999b] starts from the physical grouping
that is usually determined by the environmental context of the target system
or by the physical capabilities of the existing entities and tries to create
the interactions that fulfill the functional requirements. The idea outlined in
[Parunak, 1999b] is to apply linguistic case theory analysis on an informal
task description as it is e.g. given by the Task view (Section 5.3). First of all,
Linguistic Case Theory [Cook, 1979], [Parunak, 1995] assigns a set of slots to
each entity in the problem domain. These slots are typically filled with nouns
associated to each verb in the informal description and each slot reflects the
semantic connection of the role inhibitor to others. The verb and the collected
nouns then become potential candidates for role descriptions. Although this
approach is in accordance with the organizational or physical constraints of
the target system, in its pure form it is only applicable if such a physical
grouping really exists.

In the Massive design method, I have tried to combine the advantages of
these two approaches and to avoid their limitations as far as possible. First
of all, we need a new definition that combines the role concepts according to
both strategies.

Definition 5.4.1 (Role). A role is a logical grouping of atomic activities
according to the physical constraints of the operational environment of the
target system.

Definition 5.4.1 tries to combine the top-down and the bottom-up ap-
proach towards role delimitation by equally weighting the existing functional
and physical groupings. Figure 5.10 illustrates the basic idea of our hybrid
strategy: the functional decomposition and the physical structure are inte-
grated into a common role that fulfills the functional as well as the physical
requirements. The resulting micro process for role modeling in Massive is
pretty much straightforward as shown in Process Model 12.

In order to demonstrate how this micro process is applied, recall the task
tree for the TCS domain as it is shown in Figure 5.9 on page 136. From this
task tree, we can derive the following set of roles.

5.4 Role View 141

Process Model 12 Massive Role Modeling

1. Identify functional groupings In this step, the basic capabilities are
grouped together into functional roles such that each role represents a co-
herent cluster of functions that is sufficiently different from other clusters.
[Collins and Ndumu, 1998] suggest two rules of thumb that can support this
process:
• The Sphere of responsibility test aims at identifying local resources that are

used by a group of functions and to associate this group with a particular
role.

• The Point of interaction test, on the other hand, is used to separate the
different functional groupings from each other in order to achieve a high
degree of partitioning of the target system.

Thus, the two rules of thumb clearly relate to the concepts of coupling and
cohesion.

2. Identify physical groupings In the second step, the physical constraints that
are present in the problem domain are identified and documented. The physical
groupings are usually determined by the system environment e.g. hardware
devices or geographical constraints.

3. Identify basic problem solving capabilities
4. Integrate In the final step of this micro process, the functional roles are unified

with the physical entities. It is important for the designer to define a mapping
from one group onto the other that achieves a high degree of resource efficiency
i.e. that does not overload a particular resource while others are not used to
their possible extend. If, for example, a workstation represents a physical role,
the functional roles that are mapped onto this workstation should not be of
a computational complexity that cannot be handled by a single computer nor
should they be so lightweight that the machine is idle most of its time.

The task of a TCS module (or simply module) is to transport goods within
a railroad network. To achieve this task, the module has to perform a local
planning process that yields a plan through the railroad network and that sat-
isfies the customer constraints with respect to freight availability and freight
delivery deadlines.

As already mentioned in Section 5.3, a TCS union is a meta-level structure
that emerges whenever two or more modules decide to share a particular
location route. A union integrate additional modules if there are sharing
possibilities with the union members and thus reduce its costs by performing
a local optimization process. Furthermore, a union can also release one or
more of its members from the union if this allows the union to integrate
another module thats cost saving potential is higher then the saving that
was gained with the original module. Global optimization within the society
of unions emerges from the local optimization steps of the individual unions.

The task manager is responsible for handling incoming transportation
requests. The task descriptions are externally specified; each task has a time
stamp that indicates, when (i.e. in which clock cycle) the task should be
announced to the system. This mechanism allows to simulate time varying
task arrival-times.

142 5. Massive Views

The net manager controls the location route usage by serving the route
allocation requests of the unions. It has direct access to the underlying rail-
road network. The major task of the net manager is to guarantee that no
location route is allocated to more than one module or union during a partic-
ular time window. Furthermore, the net manager is responsible for managing
an existing schedule on the location routes (i.e. passenger trains) and thus
limit the available time windows for some location routes.

With this set of functional roles, we can now go on and identify the phys-
ical constraints that are present in the problem domain. In the TCS/MAS
system, this is straightforward as the physical structure of the problem do-
main is not important for the structure of the target system because the
system implements a virtual multiagent system that is running in a single
process.

In future extensions of the TCS/MAS to a fully operational system, how-
ever, there is the possibility to distribute the agents to physical entities, for
example the transportation modules that handle the transportation tasks or
to remote machines that handle the resource management process. Thus, the
design of the multiagent solution should reflect this possible extension and be
flexible enough to serve as a basis for a transfer of the software architecture
to the physical world.

The next step in the micro process for role modeling in Massive is to de-
fine the basic problem solving capabilities that are needed by the agents. The
capabilities that are described in this section are the basis for the subsequent
role aggregation process for the roles of TCS agents.

The main capabilities that are needed by the agents are as follows.

Planing algorithm for a single task This capability is needed by a
transportation module to find a path through the railroad network from
the source node of the transportation task to the destination. Addition-
ally, the local planning operator must determine the time windows (i.e.
the earliest possible arrival time and the latest possible departure time)
for each intermediate node in the path that must be maintained in order
to deliver the goods on time.

Plan integration operator Whenever two or more modules want to share
location routes, their individual plans must be synchronized by inserting
join and split operations into the start and end nodes of the shared routes,
respectively. This process requires a sophisticated and flexible planning
mechanism that allows for the integration of as many modules as possible
into a union.

Decision functions The decision functions of the modules and unions de-
termines which of the potential sharing peers offers the biggest cost saving
potential. The computational complexity of the decision function should
be as small as possible as it is likely to be used many times during the
planning process.

5.4 Role View 143

Plan execution simulation This capability, finally, is used for the visu-
alization of the schedule such that it can be evaluated by the system
operator. A dynamic animation of the plan execution process can pro-
vide a much better impression of the global schedule then a collection of
static plans.

I will not discuss these capabilities in detail here, the interested reader
may refer to Appendix B.1 for a thorough presentation.

The final step of the Massive micro process for role modeling is to inte-
grate the functional and physical groupings together with the basic problem
solving capabilities into roles. The functional and the quasi nonexistent phys-
ical groupings presented in the previous paragraphs suggest that it is quite
natural to use the functional decomposition as the final role models. This
natural practice is justified in the case of the task manager and in the case of
the net manager as these roles are independent of any other functional role
and so they can be modeled in isolation. However, this is not the case with
the modules and unions. These roles have a rather tight coupling and this
coupling should be reflected in the system design.

We have assumed so far that a union emerges when two or more modules
decide to share a location route. Even though this view reflects the basic idea
of the TCS approach, it is not really appropriate in the design of the software
system that implements the approach. For a more clearly structured design,
it is a better idea to view each individual module as a special case of a union –
simply a union with a single module, in the context of this work referred to as
a degenerated union. Applying this scheme results in a much simpler system
design because it allows us to treat modules and unions uniformly. Thus,
we have less abstractions and less complexity in our design. Abstractions,
on the other hand, are of course extremely valuable when a problem must
be decomposed into several parts. But this example demonstrates that an
extensive use of abstractions can lead to difficulties that can be circumvented
if some abstractions are merged together into larger units.

However, the unions are not the only functional roles in the TCS/MAS
system as we also have the task manager and the net manager that con-
trols the resource handling process. As described above, the net manager is
responsible for accepting incoming location route requests and computing a
schedule that uses the underlying resources most efficiently. Because of the
fact that there are no other related tasks in the system, the entire functional
role is determined by a single activity. This holds also for the task manager
which does not have related functional aspects and is thus also mapped in a
one-to-one manner to the functional role. This completes the role modeling
process for the TCS domain. The problem that remains to be handled in the
role view is then to assign these roles to agents.

144 5. Massive Views

5.4.2 Role Assignment

Role assignment is the process of mapping roles as they were introduced in
Section 2.1.2 and discussed in the previous section onto agents. By defining
agents as the sum of the agent architecture and the potential roles the agent
can play as it was suggested in Section 2.1.4, we are now faced with the task
to group the roles in way such that each group of roles can be played by a
single agent.

This role assignment within a multiagent system can either be static, i.e.
the agent is assigned a particular role at system start-up or it can by dynamic,
i.e. the role assignment to an agent can change during the agents lifetime.
Furthermore, an agent can play its different roles sequentially or it can have
several roles at the same time.

Static role assignment has the advantage that the system designer need
not think about how the agents internal state changes during a role change
can be modeled. The agent is bound to a fixed task and no intra-agent con-
flicts of any kind can occur. However, static role assignment is not feasible
if different roles share particular resources, for example cognitive structures.
The knowledge transfer from one agent to another can be prohibitive for a
static role assignment and so a dynamic scheme must be applied. An example
for this case is discussed in Section 6.1.

Dynamic role assignment becomes a very difficult problem if all agents
have the same capabilities and the role assignment process should be arranged
by the agents themselves. In [Fischer, 1993] this problem is discussed in depth
and a generic interaction protocol for the dynamic assignment process is
presented.

In the TCS/MAS system, a static the role assignment scheme is applied
because of the natural mapping from the functional roles to agents. There
is no need for an agent to switch between functional roles in the application
and thus the role assignment can be hard-coded into the implementation.

5.5 Interaction View

The roles that have been developed in the previous section are the fundamen-
tal abstractions that decouple the functional aspects of the system from the
agents. However, some functional aspects require the collaboration of several
agents in order to be fulfilled and these collaborations must be specified by
the system designer in one way or another.

In Section 2.2.1, I have defined conflict resolution as the general purpose
of any interaction between agents. Now, I will describe how a system engineer
can track down the abstract ideas behind the conflict resolution process into
a concrete implementation. To this end, we shall decompose the interaction
design process into three layers of abstraction as depicted in Figure 5.11.
The design process thus proceeds from the most abstract level towards an

5.5 Interaction View 145

refine

refine

Intent Layer

Protocol Layer

Transport Layer Fig. 5.11. Layers of Abstraction in Interaction Design

T1

T11 T12 T13

T2

T
21

T22

T222T221

T

Fig. 5.12. Task Decomposition

implementation by refining and extending the concepts on the next higher
level.

5.5.1 Intent Layer

The intent layer is the highest level of abstraction of the interaction design
process where the system designer specifies the general nature of the inter-
action process, i.e. the purpose of the interaction. The interaction purpose
describes why the agents interact with one another. For example, the pur-
pose of interaction can be co-operation where the agents will usually work
together to jointly solve a given problem. The agents are thus usually not
self-interested as long as the overall system task is solved. A typical example
for such a situation is task decomposition. This interaction scheme achieves a
hierarchical decomposition of the overall system task into sub-tasks. Ideally,
these sub-tasks are independent from each other and can thus be worked on
separately. Figure 5.12 illustrates the basic idea: the overall system task T is
split up into two sub-tasks T1 and T2 that are divided in turn.

Whether a task decomposition is feasible usually depends on the structure
of the problem domain which is mainly characterized by its coherence. A very
dense problem space is usually non-separable i.e. it cannot be split into several
parts and is thus resistant against task decomposition. A separable problem

146 5. Massive Views

Match-
maker

Trader

Trader Trader

Trader

Fig. 5.13. Centralized Market

space, on the other hand, often offers a natural decomposition into several
independent parts that can be worked on in parallel.

Therefore, task decomposition is usually in suited for separable problem
domains where the decomposition requires some sort of explicit co-ordination.
A certain degree of direct interaction between the agents is desirable but not
necessary. The approach scales rather well and can therefore be used in small
agent systems as well as in larger ones. The co-operative behavior that is
necessary to achieve a smooth task decomposition can either be built into
the agents by the designer or it can develop over time in that the agents
learn that co-operative behavior usually pays [Rovatsos and Lind, 1999],
[Rovatsos and Lind, 2000].

Another possible purpose of agent interaction is competition. In that case,
the agents usually interact to optimize an external property and simulate a
market-place where (abstract) prices for resources are negotiated. Ideas such
as Market-Oriented Programming [Wellman, 1996] are attempts to capture
problems of distributed resource allocation with little information. The major
advantage of these approaches is that the agents need not provide internal
information to external authorities as the only information that is exchanged
is the price.

Market-based mechanisms can be implemented in a centralized form as
shown in Figure 5.13 where the agents interact with a matchmaker agent that
is responsible for bringing together sellers and buyers. This form of Market-
Oriented Programming has the advantage that the degree of communication
is low because all agents are linked to the matchmaker. Furthermore, the
trade can be performed anonymously.

In its decentralized form as shown in Figure 5.14, each agent is linked to
any other potential trading partner and the agents negotiate directly without
using an intermediate matchmaker. Although this approach has a higher
degree of communication overhead it has the advantage that no global pricing
scheme takes places which can help the individual agents to increase their
profits.

In any case, Market-Oriented approaches are well suited for competitive
agent societies that interact directly. The structure of the problem domain is
not as relevant but the idea of a market suggests that a separable domain is
preferable. Whereas a decentralized market scheme is suitable for small agent

5.5 Interaction View 147

Trader

Trader Trader

Trader

Fig. 5.14. Distributed Market

societies, a centralized scheme scales rather well as long as the matchmaking
process is sufficiently simple and can thus be better used for larger societies.

Another high level decision that must be made before going into more
specific details of the interaction design is the mode of interaction that will
be pre-dominant in the application. The agents in the multiagent system
either interact directly, for example by direct peer-to-peer communication
or they interact indirectly via the environment. Direct interaction usually
requires some facilitator that brings together the agents that want to interact
with each other. Such a service is often provided by the agent management
framework, e.g. FIPA [FIPA, 1997]. Indirect interaction, on the other hand,
is typical for a real or a virtual environment where the agents meet for some
purpose. It is not limited to verbal communication alone; the agents can
communicate without explicit message exchange making it more flexible and
suitable for agents that have only limited communication skills.

The last important requirement to be analyzed on this level of abstrac-
tion are scalability requirements. Scalability is of the interaction scheme is
an important issue that has seldom been addressed in the existing litera-
ture [Lee et al., 1998], [Gerber, 2000]. In small systems, it is feasible that
any agent can communicate with any other agent in the system. But as the
systems grows, the exponential growths of message exchange that is intro-
duced into the system can easily become prohibitive. Designing a system that
works well for 10 agents is often a straightforward task; however, scaling the
system up to, say, 10000 agents is often a completely different matter and
may require a re-design of major parts if the operational size of the system
was neglected during the design and test phase. The question of scalability
is usually handled in the Society view of the system but it also play are role
in the design of the interaction schemes. If the system is likely to be large, it
is necessary to find scalable forms of interaction in order to ensure later the
scalability of the entire system

The TCS domain is clearly an optimization problem that can be solved
with a market based approach. An analysis of the input data (transportation
tasks) has shown that the problem domain is almost non-separable because
the routes of the tasks are highly overlapping. The application will feature a
direct interaction scheme between the software agents that will be built upon
a proprietary agent management framework. Furthermore, the system must
scale up to 500 agents.

148 5. Massive Views

After these high level requirements on the interaction processes have been
laid out, the system designer should have a fairly good – although still very
rough – idea about how to proceed. Therefore, we can now turn the a more
specific characterization of the interaction schemes.

5.5.2 Protocol Layer

Protocols are means to describe the general control flow within an interaction.
Generally, an interaction protocol consists of two distinct phases. In the first
phase, the agents (or at least one of the agents) must be able to signal a
request that it wants to start an interaction scheme with one or more other
agents. This part of the interaction is usually covered by the agent framework
such as FIPA [FIPA, 1997], [FIPA, 1998] and it will therefore not be treated
in this section.

Another aspect that I would like to mention only briefly in this sec-
tion is the problem of the mutual understanding between agents from dif-
ferent sources. Several agent communication languages have been proposed
[MacGregor and Bates, 1987], [Bussmann and Müller, 1993], [FIPA, 1996],
but it seems that the KQML (Knowledge Query and Manipulation Lan-
guage, [Finin and Fritzson, 1994], [Mayfield et al., 1995]) has become a de-
facto standard as agent communication language. However, I will only give a
short introduction to the basic ideas of the KQML and direct the interested
reader to the original sources as cited above.

The goal of the KQML project is to develop a method for distributing in-
formation among different systems that clearly separate the semantics of the
domain-independent protocol from the semantics of the domain-dependent
messages [Neches et al., 1991]. KQML messages have a fixed structure that
allows each receiving agent to understand the message structure. To under-
stand the content of the message, the agent must have additional knowledge.

The basic structure of any KQML message is the following:

(<KQML-Performative>
:sender <word>
:receiver <word>
:language <word>
:ontology <word>
:content <expression>
...)

Each message consists at least of a so-called performative. Performatives
were introduced in speech act theory [Searle, 1969] to describe the illocu-
tionary force (i.e. the intended meaning) of an utterance. Speech act theory
was discovered by multiagent researchers as a valuable tool to describe the
meaning of messages that are exchanged between agents [Werner, 1988].

The structure of a KQML message is divided into several fields that
have fixed semantics. In the above example, the :language, :ontology and

5.5 Interaction View 149

:content field define the language in which the message is expressed, the vo-
cabulary of the language and the message itself, respectively. The content lan-
guage can be anything from user defined data structures up to LISP or PRO-
LOG Programs or SQL queries. One of the most common content languages
is the Knowledge Interchange Format (KIF) [Genesereth and Fikes, 1992].

KQML messages or any other types of messages define single messages
that are exchanged between the agents, a more complicated matter is to
organize the orderly exchange of sequences of messages. Therefore, we will
no turn to the main part of this section and discuss how these interaction
protocols can be specified in a natural and manageable way.

For an example of an interaction protocol, consider an English auction.
There, an auctioneer offers a product at a particular price to a group of
bidders. Each of the bidders individually decides to accept that price or to
decline the offer. If one of the bidders accepts the current price, the auctioneer
raises the price by a fixed rate and asks the group of bidders again if any of
them accepts the new price. If this is the case, the price is raised again and
the cycle repeats until none of the bidders is willing to pay the current price.
Then, the last bidder who accepted the price is given the product.

In this example, we can identify the major elements of interaction proto-
cols. First, we can separate the participating agents into different groups. In
this case, we have two groups: the auctioneer and the bidders. Each group
has a set of associated incoming and outgoing messages an internal functions
that decide about their next action. We will refer to the set of messages and
behaviors that are associated with a group of agents as a role that can be
played by an agent. Please note that the roles that are discussed in this view
are interaction roles as opposed to functional roles as they were discussed in
Section 5.4.1. Note also that just with functional roles, agents are not lim-
ited to a single interaction role. For example, the auctioneer in the English
auction can be a bidder in another auction at the same time.

The second important aspect of an interaction protocol besides the partic-
ipating roles, is the temporal ordering of function evaluation and the messages
that are exchanged. For example, it would not make sense or would be impos-
sible for the bidder to decide on an offer and to decline it before it has even
received the offer. Therefore, the interaction protocol determines the flow of
control within each role as well as between different roles.

It is precisely the dualism mentioned in the previous paragraph that
makes protocol design a difficult task. There are not only role-internal
aspects to consider during the design process, but also external ef-
fect induced by the other roles. Even worse, there is currently only
little Software Engineering support for the design of interaction pro-
tocols. A number of protocol description languages (PDLs) have been
proposed ranging from specification languages for low level communi-
cation protocols [The International Organization for Standardization, 1997],
[Holzmann, 1991] up to high level specification languages for multiagent ap-

150 5. Massive Views

plications [Burmeister et al., 1995], [Kolb, 1995]. Up to now, however, none
– perhaps except for Estelle – of these languages has gained wide-spread
acceptance.

One reason for this lack of acceptance is probably the fact that the above
languages only provide text-based representations for the interaction proto-
cols. This makes it hard, especially for complex protocols, to understand the
flow of control within the protocol. An alternative for these text-based lan-
guages are therefore graphical languages that make the described protocols
more accessible for the reader. As mentioned in section 3.4.2, the UML al-
lows the Software engineer to specify almost all aspects of a software system.
The key term in the last sentence, however, is “almost all” as the field of
interaction protocols is one of those areas that are not treated adequately by
the UML.

Due to the strong focus on object-oriented software design, the UML is
not right away suitable for agent-based systems. In order to make it fit some
special requirement of agent-oriented software, there are two possible ways
to be taken. One way is to extend the UML by providing new structural ele-
ments and diagrams that enhance the expressive power of the base language.
This way is favored by the OMG/FIPA in the development of AgentUML

[OMG and FIPA, 1999] which proposes an extension of the UML with re-
spect to agent-oriented concepts. As part of the AgentUML in the FIPA
standard, [Bauer et al., 1999] suggests an extension of the UML by a com-
pletely new diagram type called protocol diagrams. These diagrams combine
elements of UML interaction diagrams and state diagrams to model the roles
that can be played by an agent in the course of interacting with other agents.
The new diagram type allows for the specification of multiple threads within
an interaction protocol and supports protocol nesting and protocol templates
based on generic protocol descriptions.

This approach, however, has the major drawback that it violates the idea
of the UML as a general design language. If each group within the com-
puter science community added their own UML extension according to their
particular needs, the base language is likely to be split up in several increas-
ingly unrelated dialects. The result, as it can be observed with programming
languages such as Basic, is a collection of inconsistent language fragments.
Besides this not being the idea of a standard language, it introduces the ad-
ditional difficulty of having to learn a new dialect when switching between
two specialized application fields.

As a consequence from the above considerations, I decided to take an-
other approach to protocol specification in Massive, resulting in a two stage
process that uses a graphical notation based on UML diagrams for the ab-
stract protocol specification and a textual representation for the concrete
implementation.

One of the goals of my work on using UML as protocol description lan-
guage is to change the standard as little as possible and only within the

5.5 Interaction View 151

Transition

Branching

[guard]

Fork...

Lane 1 Lane 2

Swimlanes

Join

...

State

Inital State

Final State

Fig. 5.15. Structural Elements of UML Activity Diagrams

boundaries of changes that were explicitely admitted by the language design-
ers [Booch et al., 1999]. Thus, I do not introduce completely new diagram
types or the like but instead rely on the provided structural elements and use
them to model the system of agent-based applications.

UML Activity Diagrams as PDL. Activity diagrams in UML models
provide a number of structural elements as shown in Figure 5.15 to describe
algorithms in a flowchart like manner. To this end, each computation is ex-
pressed in terms of states and the progression through these states. In order to
allow for a hierarchical modeling, the UML distinguishes between two classes
of states. Action states are atomic entities that cannot be decomposed and
that relate to atomic statements in a programming language, e.g. variable as-
signment. Activity states, on the other hand, represent a collection of atomic
states and can thus be decomposed into these atomic states. Furthermore,
the execution of an activity can be interrupted between any two subsequent
states. In terms of programming languages, actions relate to statements and
activities relate to subroutines.

The states of an activity diagram are linked with each other through
transitions that indicate the control flow within the activity diagram. Each
transition can have a guard condition that controls the flow of control in that
it only allows a transition to fire if the guard condition is true. Because of
the basic requirement that each transition must have at least one start and
one end point, special states are introduced that represent the beginning and
the end of an activity diagram, respectively.

The control flow within an activity diagram is not necessarily linear, other-
wise it would be impossible to express anything other then trivial algorithms.
Therefore, branching elements that represent the decision points within a di-

152 5. Massive Views

CFS

send
CFR

receive

-
? ?

� -

Timeout

Fig. 5.16. Synchronization Point

agram are provided. Each branching points stands for a boolean decision, i.e.
the flow of control can proceed along two different paths.

Many modern programming languages provide some notion for pseudo-
parallel program execution within a single operating system process. These
light-weight processes – usually referred to as “threads” – can be modeled in
UML activity diagrams by using two structural elements. A fork operation
splits a single thread of execution into two or more threads that are subse-
quently executed in parallel. Thus, a fork bar has one incoming transition
and several outgoing transitions. In order to merge several of these paral-
lel threads into a single thread again, UML activity diagrams provide the
join element. Thus, a join barrier has several incoming transitions and only
a single outgoing transition, it can therefore be used to synchronize several
parallel threads of execution. Note that a join barrier waits until all incoming
threads have arrived at the barrier before proceeding with the single master
thread.

Because of the fact that activity diagrams tend to become somewhat con-
fusion with growing in size, UML activity diagrams can contain so-called
swimlanes that are used to partition an activity diagram into several concep-
tually related parts. Within an activity diagram, each swimlane must have a
unique name and each activity must belong to exactly one swimlane.

I will now propose some slight modifications to the basic elements of UML
activity diagrams in order to make them usable to describe agent interaction
protocols. First of all, we will extend the idea of swimlanes as a means to
distinguish between conceptually related parts of an activity diagram. In our
interpretation, these swimlanes are interpreted as physically – as opposed to
conceptually – separated flows of control which we will refer to as Control
Flow Spaces in the rest of this section. These control flow spaces are linked
with each other via explicit communication channels that manage the mes-
sage exchange between two connected spaces. The message exchange itself is
modeled in synchronization points that denote the sending and the reception
of messages, respectively. The graphical representation of a synchronization
point is shown in Figure 5.16 where CFS and CFR denote the control flow
of the sender and the control flow of the receiver, respectively.

Each synchronization point has several incoming transitions out of which
exactly one must be labeled with the keyword send. The other transitions
are the receivers of the respective message. Whenever the control flow of a
receiver enters a synchronization point, the receiver suspends until a message

5.5 Interaction View 153

Communication
Channel

Synchonization
Point

Role 1 Role 2

send receive

Control Flow Space
Fig. 5.17. Extended
Activity Diagram

has been delivered. This happens whenever the control flow of the sender
reaches the synchronization point. After the massage has been delivered,
the control flow of the sender and the control flow of the receivers resume
after the synchronization point. In order to prevent the receivers from infinite
blocking while waiting for a message that never arrives, an additional timeout
transition for each receiver can be attached to the synchronization. Whenever
the timeout is reached and no message has been delivered, the control flow
of the respective receiver resumes at the state pointed to by the timeout
transition.

A broader view of activity diagrams in conjuction with agent protocol
specification is shown in Figure 5.17. The round boxes indicate the control
flow spaces that are associated with each role within the agent interaction pro-
tocol. The control flow of each of these roles is modeled using the structural
elements that are provided by standard UML activity diagrams. However,
the self-contained control flow spaces are linked via a communication chan-
nel that holds one synchronization point that links the activity diagrams of
the different roles.

A very important feature of UML activity diagrams is that they pro-
vide a powerful structuring mechanism that can be used to make protocol
mode readable. Since activity states can represent complete automata, it is
straightforward to use them for macro definitions that can be used in inter-
action protocols. Figure 5.18 illustrates the idea: 5.18(a) shows an activity
diagram for dispatching an incoming message according to the message type.

154 5. Massive Views

messageRead
Handle Type 1

Handle Type 3

Handle Type 2

Error

messageRead

(a) (b)

[message==

[message==

[message==]

]

]

[no]

[no]

[no]

Dispatch message

[Type_3][Type_1] [Type_2] Error

Type_1

Type_2

Type_3

Fig. 5.18. Defining Macros

Using the UML rule that a state can have several outgoing transitions that
are labeled with conditional statements, we can rewrite the shaded part of the
original automaton that contains three branching points into a single state
as shown in 5.18(b)2. Collapsing several states into a single macro state has
not only the advantage to make a diagram more readable, it is also impor-
tant that the macro state can be given a speaking name that highlights its
purpose. Although the overall gain seems to be pretty small in the above ex-
ample, the gain soon becomes apparent in more complex protocols where each
decision point or loop construction that is hidden improves the readability of
the protocol. Furthermore, this mechanism can be used to embed protocols
into others, allowing for a hierarchical structuring, flexible combination and
re-use of protocols.

In order to illustrate the use of UML activity diagrams for interaction
protocol specification on a realistic example, recall the English Auction that
was presented earlier in this section. In Figure 5.19, we have depicted an in-
teraction protocol that describes the course of actions and message exchanges
within the auction more formally.

The first step in the interaction design process is to identify the roles
that interact with each other. In the example, we have already identified the
auctioneer and the bidder as the participating roles. Now, we create a control
flow space that will later hold the finite automaton that describes the behavior
of the agent playing a particular role. It is usually a good idea to develop an
initial version of each automaton without considering the other automata, i.e.
2 Note that conditions on the outgoing transitions are abbreviated in the example.

5.5 Interaction View 155

Price
Send

Check
Answer

Receive
Price

Request
Payment

Check
Price

Send
Proposal

Set new
Price

Payment
Initiate

Auctioneer

Price

[receive Answer

[timeout]

[send
Proposal

Bidder

[send
Request

[receive
Request

[receivePrice

[not understood]

[yes]

ok

[not ok]

[no]

[yes]

[send

]

]

]

]

[Proposal]

Auction
Init

Proposal.price
>= Price [no]

Price >=
Minimum

[timeout]

]

]

Fig. 5.19. English Auction

without switching back and forth between different automata. Thus, for the
auctioneer, the auction starts with an initialization of its internal data, e.g.
with determining the initial price of the product. Then, the auctioneer sends
out a proposal to the bidders and waits for the incoming replies. In order to
make the example more realistic, we assume that a bidder can indicate that
the proposal was not understood, e.g. because the bidder is not familiar with
the ontology used. In that case, the auctioneer simply ignores the message
and continuous to wait for further messages. If, on the other hand, the price
is accepted by the bidder, the auctioneer raises the price according to a fixed
rate and the cycle starts from the beginning. If the offer is not accepted by
the bidder, the auctioneer continuous to wait for incoming replies until a fixed
timeout. When the timeout has expired and no bidder has accepted the offer,
the product is given to the last bidder that has accepted the price (if that
price exceeds a previously defined minimal acceptable price). Please note,
that the CheckAnswer state uses the macro mechanism explained earlier to
dispatch the incoming messages.

Now that the behavior of the auctioneer has been fully specified, we can
turn to the bidder role. In the example, the bidder goes into a waiting loop as

156 5. Massive Views

soon as the protocol execution is started. It leaves this loop when it receives
an offer proposed by the auctioneer and checks whether to offered price is
acceptable according to its individual goals. If this is the case, the bidder
sends out a positive reply and re-iterates the waiting process. If the actual
price is not acceptable, the bidder waits for a message from the auctioneer
that indicates if the bidder is given the product or nor. Obviously, this can
only happen when the bidder has issued a positive reply during the auction.
To avoid an infinite blocking of the bidder, a timeout is applied to terminate
the waiting process after a finite time. The bidder that receives the positive
acknowledgment from the auctioneer, on the other hand, will immediately
initiate the payment process to finally receive the product.

This small example should be sufficient to provide the reader with an im-
pression on how to apply the suggested method to arbitrary agent interaction
protocols. The best way to see how the method works in practice is to pick an
(preferably easy) protocol from the application domain of interest and then
to simply start right away with an iterative modeling process. The value of
the diagrams will then quickly become apparent. In order to demonstrate
how interaction protocols are actually developed, we will now return to the
TCS example and I will explain the three interaction schemes that are used
there.

The core interaction scheme of the TCS/MAS system is an optimization
process that is executed by the agents in order to reduces their local cost as
well as the total cost of the agent society. The key to optimization in the
scenario presented is to find agents that use the same location routes and
to have these agents share the respective routes by coupling together at the
beginning and by splitting up afterwards. This peer matching is achieved
by two-step negotiation processes between the agents in the agent society.
In our system, we have combined two negotiation protocols to achieve the
global optimization of the schedule.

A schedule is generated in the following way: an initial solution for the
module schedule is obtained by running the contract-net [Smith, 1980] proto-
col whenever a new task is announced to the system. New tasks are incremen-
tally integrated in the existing scheduling which guarantees, that always a
solution for the problem (as far as it is known to the system) exists. However,
this solution may be (and usually is) not optimal. In order to improve the
quality of the existing solution, the simulated trading [Bachem et al., 1992]
[Bachem et al., 1993] protocol is run on the set of tasks (or the respective
modules) currently known to the system. Unfortunately, executing the sim-
ulated trading protocol is a computationally expensive operation and so it
is executed only periodically — either after a fixed number of new tasks has
been added to the existing solution or explicitly triggered by a user request.

The hierarchical organization of the two negotiation protocols supports
the aforementioned properties of incrementality and anytime behavior and
also implies a high degree of flexibility because of the possibility to asyn-

5.5 Interaction View 157

Fig. 5.20. Contract-Net Protocol

chronously execute the simulated trading process at any time. A third in-
teraction protocol that is used within TCS/MAS is a client-server protocol
that is use for the route allocation process. In the following sections, I will
present the instantiation of contract-net, simulated trading and client-server
protocol in the TCS/MAS system.

The contract-net protocol as depicted in Figure 5.20 features two types of
participants: one manager and a group of bidders. The protocol is initiated by
the manager which sends a description of the task under consideration to the
bidders. Note, that “task” is not a transportation task mentioned earlier but
rather some abstract description of a problem to be solved. We will discuss
the instantiation of the general protocol to our scenario later.

After the bidders have received the task description, each of them com-
putes a bid that informs the manager about costs that will be charged if the
task is assigned to that particular bidder. After all bidders have submitted
their bids to the manager, the manager selects the bid that minimizes his
cost and assigns the task to the respective bidder (+) and rejects the offers
of the other bidders (-).

In the TCS/MAS system, the contract-net protocol is executed whenever
a new (degenerated) union enters the system and after it has computed its
local plan. The union then initiates the contract-net protocol as the manager
and offers the plan to the other currently active unions. These unions check

158 5. Massive Views

Announce
Task

[send Description]

Compute
Bid

Collect
Bids

Select
Best Bid

Inform
Bidders

Integrate
Module

Manager

Bidders
Select[no bidders]

Bidder

[receive

Description]

[no bids]

[timeout]

[sendBid]

[send "grant"||"reject"]

Grant?
[no]

[yes]

Wait for
Description

[receive Bid]

[receive
]Notification

[timeout]

Fig. 5.21. Contract-Net Protocol (UML)

if they contain one or more modules that are a potential sharing peers and if
this is the case, they offer a sharing commitment to the new union. Appendix
B.1 contains a rather detailed explanation of the operator that is capable of
finding a maximum degree of overlapping among an arbitrary number of
plans. This operator is used by the bidders to compute their internal cost
functions. The manager union collects these offers and selects the one that has
the largest cost saving potential. To decide which of the potential contractors
U1, . . . , Uk is best from the point of view of the manager M , the manager

5.5 Interaction View 159

Fig. 5.22. Simulated Trading

selects the union Ui where c−(M,m) − c+(Ui,m) has a maximum3. It then
transfers the module to the winning union and ceases to exist because it does
not contain other modules. If no union offers a sharing commitment, the new
union remains active as degenerated union.

In order to implement the protocol with the TCS/MAS system, the infor-
mal notation given in Figure 5.20 must be formalized to derive the necessary
design decisions. In Figure 5.21, the Contract-Net protocol is re-written using
the UML notation scheme introduced earlier. The graphical representation
will be refined into a textual protocol specification later.

The contract net protocol presented in this section is used in the
TCS/MAS system to obtain an initial solution for the scheduling task. How-
ever, this solution is usually not optimal and can thus be improved further.
This improvement process is done with a simulated trading approach as
shown in Figure 5.22.

The simulated trading protocol is an algorithm designed to improve exist-
ing solutions, not to construct new solutions from scratch. In the TCS/MAS
system, the input and the output of the protocol are valid schedules where
the cost of the output are always less or equal to the cost of the input. This is
trivially true since the output can always be the input if no cheaper schedule
exists. However, this property is nonetheless important because it guarantees
3 The definition of the cost function c can be found in Appendix B.1

160 5. Massive Views

Select
Action

[sendAction]

[receive

Request]

Collect
Actions

[receive Action]

[send Request]

Count
reached?

Distribute
Actions

[send]Actions

Wait for
Actions

Terminate
Protocol

Compute
Match

Manager

Actions
Request

Trader

Wait for
Request

[no]

[yes]

[timeout]

terminate][send

Distribute
Match

Execute
Actions

[send Actions]

]Actions
[receive

[receive

Actions]

Fig. 5.23. Simulated Trading (UML)

that the protocol can be aborted at any time and still yield a valid solution.
Furthermore, if the protocol is given enough computation time, it is guar-
anteed to find the optimal solution in the limit [Bachem et al., 1993]. Now,
how does this work?

The protocol shown in Figures 5.22 is initiated by a special agent, the stock
manager. In the course of protocol execution, the agents (here called traders)
perform several rounds of hypothetical trading, i.e. the traders either choose
to sell some of their goods or to buy something from others. In the context
of the TCS/MAS system, a sell operation corresponds to removing a module
from a union and a buy operation corresponds to integrating a module in a
union. Thus, the unions try to optimize their cost by exchanging unprofitable

5.5 Interaction View 161

modules with better ones. The decision which module to sell depends on a
probability distribution induced by the potential cost reduction if the module
was sold. Vice versa, the decision to buy a module offered by another union
depends on the potential cost reduction if the module would be integrated
into the union.

Simulated Trading takes place in several rounds where each union decides
whether to sell a module or to buy a module offered by another union. Af-
ter a fixed number of trading rounds, the stock manager has collected the
hypothetical sell and buy actions and it must find a valid trading match in
the set of actions. There a several validity requirements for a trading match
e. g. the difference between deletion and insertion costs must be positive, or
there must not be two buy actions on the same sell operation, etc. Finding
a trading match is NP-complete [Bachem et al., 1992] and accounts for the
computational complexity of the simulated trading protocol. Usually, how-
ever, the size of the trading graph still allows to find a trading match within
a reasonable time4. If a trading match is found, the stock manager informs
the traders which actions must be executed, i.e. which modules must be ex-
changed. Figure 5.23 shows the UML specification that will be used to derive
the implementation of the simulated trading protocol.

The third and final interaction scheme that is used in the TCS/MAS
system is the protocol that coordinates the location route allocation pro-
cess between the unions and the location route manager. The protocol is
a straightforward client-server protocol in which the net manager offers a
stateless two-step service for the allocation of location routes:

check This message from the union to the location route manager contains a
location route identifier, a time window during which the route should be
allocated and the minimal speed by which the route should be traveled.
Note that the time window is usually larger than the time required by
the querying union to travel the location route (the required time is
determined by the minimal speed and the length of the route). It is now
the task of the net manager to find a time window of the appropriate
length that fits in the existing route allocations made by other unions. If
it is possible to find such a window, the net manager returns a positive
indication to the unions, otherwise a negative indication.

book This message type is used by the union to book a particular location
route for a given time window. Note that it does not require a prior check
operation although it is highly unlikely that a union will find a free time
window on a route if it omits the prior check. Note also, that multiple
book operations on the same location route but by different unions are
handled in a first-come first-serve manner. This is due to the fact that the
net manager is organized as stateless server, i.e. it does not keep track of
the order of check operations. The advantages of a stateless organization

4 For a 5000 task problem, the execution of the simulated trading protocol with
four rounds takes approximately 40 minutes on a Sun UltraSparc.

162 5. Massive Views

are that it limits the memory usage of the net manager agent and that
is invulnerable to system failures.

free A location route that was allocated by a particular union can be freed
by this union if the ongoing planning process makes the use of location
route obsolete or when the time window during which the route is needed
has changed.

The three interaction protocols that have been discussed in the previous
paragraphs are the core part of the TCS/MAS system. The protocols that
are used in the system are not specifically developed for the TCS/MAS sys-
tem but they are adaptation of existing interaction schemes. This reflects a
good practice in software engineering: instead of trying to solve every prob-
lem alone, existing and tested approaches have been used and adapted for
a specific case. Thus, re-using existing protocols that have been tested and
found useful usually improves the time to find the solution as well as qual-
ity of the solution. Especially in the field of interaction protocols, there is
a huge amount of available literature that contains information for almost
any situation. A good introductory overview, for example, is provided in
[Kendall, 1998a]. More specific aspects of workflow and business processes
are discussed in [Kendall, 1998b].

Until now, the interaction protocols of the TCS/MAS system have been
developed on a rather high level of abstraction. In the next step of the protocol
design process, the graphical representation is transformed into a textual
representation that will then be used to construct the final code in terms of
the underlying programming language.

The Protoz Protocol Specification Environment. Protoz
[Philipps, 1998], [Philipps and Lind, 1999] is a protocol specification
system that was developed in the Multiagent Systems Group of the
DFKI. Protoz was designed to be as simple as possible but still
powerful enough to capture the most relevant negotiation proto-
cols currently in use. The specification language is related to Estelle
[The International Organization for Standardization, 1997] and uses a sim-
ilar computational concept. Estelle is a specification language for service
description and system behavior in telecommunications that uses extended
finite automata to describe the intended behavior. Extended finite state
machines are normal finite state machines plus (typed) variables. The state
in the finite state machine has a set of associated variables that can be
queried and/or manipulated in the transition specifications. In Estelle, a
protocol is a collection of several distinct automata where each automaton
can have an arbitrary number of interaction points with other automata.
These interaction points are called channels and they control the message
exchange between different automata. Estelle is a very powerful language
that was mainly developed for the specification of low level protocols. It is
therefore not directly suitable for the use in multiagent applications.

5.5 Interaction View 163

Process Model 13 Protoz Protocol Design

1. Channel definition
In the channel definition, the roles are declared that participate in the protocol
and also the messages that are allowed for each role.

2. Role definition
a) Declaration part

The declaration part of a role definition declares the number of instances
that are allowed to exist within the protocol, the initial parameters of the
role and the states that are used within the extended finite state machine.
Furthermore the variables and their types (boolean, integer, string,
message, agent and Lists over the base types) and the names of the ap-
plication procedures as well as their signatures (parameters, return values)
are declared.

b) Definition part
i. Transitions

For each transition, the entry constraints, the actions on entry and
exit transitions to other states are defined. An outgoing transition is
described by the name of the destination state, the conditions that
must be satisfies for the transition to fire and the actions that are
executed when the transition fires. Conditions for transitions can be
incoming messages or application procedure calls.

ii. Actions
The actions that are executed on the entry to or the exit from a
particular state can be messages that are sent to other agents or to
internal procedures, Variable manipulation such as value assignment
or various operations on lists over those scalar types or Branches & It-
erations such as (if-then-else) statements for branches and a while
statement for loops.

3. Error handling
a) Timeouts

Timeouts are used to abort the waiting process for incoming messages that
do not arrive. Protoz provides two sorts of timeouts:
• every: The timeout is triggered on every entry to the state, the timeout

is reset on every subsequent entry to the state.
• once: The first entry to the respective state triggers the timeout mech-

anism, the timeout is not reset when the state is entered several times.
The difference between these two classes is in their behavior when a state
waits for several messages to come in. For example, when a state waits
for five incoming messages with a timeout of 20s, the maximum waiting
time for timeout type every is 100s because the timeout is reset on every
incoming message. The maximum waiting time for timeout type once, on
the other hand, is 20s because the timeout is not reset on every incoming
message.
When a timeout fires, a special message is sent to the waiting state that
indicates that the timeout was reached. Subsequent actions are defined in
the respective state.

b) Exceptions
Exceptions are used to handle errors or failures during protocol execution
(e.g. unexpected messages, premature protocol termination etc.). Protoz
provides a single level exception mechanism that activates an application
specific procedure whenever an exception is raised.

164 5. Massive Views

WaitingForAnswer WaitingForReport

[]/announce

[c(Bid) > c(CurrentBest)]/reject(Bid)

[No Bid]/-

[Last Bid && c(Bid) < c(CurrentBest)]/accept(Bid);reject(currentBest)

[Last Bid && c(Bid) > c(CurrentBest)]/reject(Bid);accept(CurrentBest)

[Report]/applicationProc.GetResult

Fig. 5.24. Contract-Net Manager

WaitingForAnswer

ComputeBid

Execute

[announce]/applicationProc.ComputeBid

[Bid\=nil]/send(bid)[Bid==nil]/send(NoBid)

[grant]/applicationProc.execute

[reject]/-

[done]/send(Report)
Fig. 5.25. Contract-Net Bid-
der

The Protoz environment contains a protocol compiler that generates Oz
code [Programming Systems Lab, 1999] from a given protocol specification.
A special design focus of the entire system was the clear separation between
protocol and application that uses it. Protocols are generic specifications and
can be used in many different contexts, the Protoz specification language
therefore allows to specify the protocols independently of the particular ap-
plication.

In the Protoz system, a protocol is given by a collection of roles where each
of these roles is specified as an extended finite state machine. As explained
above, extended finite state machines are normal finite state machines plus
(typed) variables. The state in the finite state machine has a set of asso-
ciated variables that can be queried and/or manipulated in the transition
specifications.

The state machine transitions fire upon incoming messages; messages may
stem from other agents or from internal procedures. These internal procedures
implement the connection to the application and allow for a uniform modeling
of internal and external communication. The protocol definition follows the
process model shown in Process Model 13 on page 163.

5.5 Interaction View 165

In order to demonstrate how an implementation is derived from a protocol
specification, recall the contract-net protocol from Figure 5.21. The joint
representation from that figure is now split up into two independent finite
state machines for each role as shown in Figures 5.24 and 5.25. These finite
state machines are then described using the Protoz protocol language and
the compiled to directly executable Oz code. The Protoz specification for the
Contract-Net is included in Appendix C.

5.5.3 Transport Layer

The final step in the interaction design process is to map the abstract mes-
sages that have been defined in the protocol specification onto the concepts
of a concrete agent framework or operating system. Due to the wast number
of different ways that have been proposed as message exchange methods, I
will only pick two approaches that are very common in multiagent systems
in order to illustrate the typical problems that are dealt with on this level of
abstraction.

A straightforward way to implement a message exchange mechanism be-
tween two agents is surely to use simple message passing between the partic-
ipating agents. In this approach, each agent has a unique identification tag
and an agent that wants to send a message to another agent adds this tag
to the message before the message is handed over to the message passing
system that is responsible for delivering the message to the addressee. This
sort of message passing is usually referred to as one-to-one or point-to-point
communication. Often, it is convenient to allow a single message to be deliv-
ered to several receivers at the same time, i. e. the sender need not re-send
the same message to each receiver one after the other. While this multicast
option is only a matter of convenience, a broadcast message is substantially
different. In the case of a broadcast, the message is delivered to all agents
that are known to the communication system, i. e. the sender of a broadcast
message does not know which other agents will finally receive the message
that is sent out as a broadcast message. This is comparable to the situation
of a radio or television station that is ultimately unaware who receives the
program that is broadcasted.

Another important aspect of direct message passing is whether the mes-
sages are sent and received synchronously or asynchronously. In the first case,
a potential receiver must enter an explicit waiting state before it can receive
any messages while in the second case, a message can arrive at any time in
the addressees control flow. Hence the label asynchronous messages in this
respect.

To illustrate this situation, consider the two examples shown in Figure
5.26. In 5.26(a), the information provider asynchronously sends the infor-
mation to the subscriber without explicit request whereas in 5.26(b), the
requester sends an explicit query to the information provider specifying in
which information it is interested and enters into the waiting state. The

166 5. Massive Views

(a)

(b)

inform

Requester Provider
query

reply

Provider Subscriber

Fig. 5.26. Information Ex-
change

Agent Agent
Agent

Blackboard

Transaction Monitor

filter

Agent
Agent

filter

Agent

filter

filter filter filter

Agent

filter

Fig. 5.27. Generic Blackboard Architecture

information providers answers with a reply that contains the requested infor-
mation given it is accessible to the provider and the requester is authorized
to receive the information in question. The first form of interaction is use-
ful when the subscriber needs to be informed about some sort of changes
without knowing in advance when a change will take place. Note that the
subscription process is not shown in Figure 5.26. The subscription can be
either explicit, i.e. the subscriber asks for being informed about new infor-
mation or implicit in which case the provider broadcasts the information to
all reachable receivers regardless of whether they want the information or
not.

Besides one-to-one and one-to-many (broadcast) message passing, a sec-
ond communication architecture is quit common in agent-based systems:
blackboards. Blackboard architectures [Engelmore and Morgan, 1988] date
back to the early days of distributed problem solving and have undergone

5.6 Society View 167

intensive research since then. In its generic form, a blackboard is organized
as shown in Figure 5.27. Several agents are connected to a central authority
that encapsulates a particular data structure. The transaction monitor shown
in the figure is responsible for controlling the access to the joint data struc-
ture and to ensure the validity of each access. Each of the agents connected
to the blackboard can read and manipulate the joint data. However, the per-
ception (reading) of the data is not necessarily the same for all agents. Each
agent receives only data that has undergone a filtering process that limits the
perception of this agent. This individualized scheme enables the designer for
example to use blackboard architectures as the basis for distributed virtual
worlds (see Appendix A.1).

Blackboards are suitable for a wide range of problem domains that have a
non-separable structure. The approach works for either competitive as well as
co-operative settings and is not limited to a particular form of interoperation.
Furthermore, blackboard architectures usually scale well and are thus suitable
for large agent societies. As we have said above, blackboards can be used to
implement virtual words and thus simulate a indirect interoperation scheme.

In the TCS/MAS example, the transport layer is implemented as a one-to-
one message passing system that allows for asynchronous message exchange.
It is thus a proprietary solution that is based on the inter-thread communi-
cation features of Oz. I will return to details of implementation in Section
5.7.

5.6 Society View

This view is concerned with the structure of the agent society that implements
the target system. In Section 2.2.2 we have already defined the concepts
“structure”, “society” and “social system”. In this section, we will provide a
characterization scheme for agent societies that allows the software developer
to describe an existing society or to specify the requirements for the society
of the target system. Furthermore, we will also discuss a micro process model
for the construction of an agent society according to a given characterization.

5.6.1 Characterization of Social Systems

In the field of multiagent systems, the definitions for agent societies and social
systems are much simpler then those in sociology as they were given in Section
2.2.2, but this does not necessarily help the system designer to develop the
right view on the agent society. In [Werner, 1989], the agent society is defined
as the (static or dynamic) assignment of roles to agents. 10 years later, in
[Weiss, 1999] not very much has changed: “. . . a specification and assignment
of roles and responsibilities to participants in a cooperative planning and/or
problem-solving endeavor. . . . ”. Because of this shortcoming in multiagent

168 5. Massive Views

offense line

middle field

defense line

goalie

coach

Fig. 5.28. Example for a hierarchical society

research, I will try to give a conceptual framework that allows the designer
to characterize or model the agent society according to a unified terminology.

In this scheme, an agent society can be classified along four dimensions:
type, structure, consistency and temporal context.

The type of the society can be either open , semi-open or closed. In an
open society, agents can freely enter or leave the society. The entry criteria
can be defined by the system designer or they can be defined by the agents
themselves. A semi-open society is quite similar except for the fact that any
agents can join the society but no agent ever leaves the society again. In a
closed society, on the other hand, the members of the society are fixed and
no fluctuation either into or out of the society takes place.

The structure of the agent society determines how the agents relate to
each other mainly in terms of communication channels. In a flat society, the
interaction between agents is unlimited, i.e. each agent can interact with any
other agent. While this structure provides a maximum degree of flexibility, it
also implies a high degree of overhead. For example, in an agent society that
uses some sort of explicit communication, a flat society structure requires
n(n− 1) communication channels.

A hierarchical society is not as flexible as a flat society because the in-
teraction channels between the agents are limited. Usually, some agents have
special organizational roles and are responsible to filter and/or limit interac-
tions. In Figure 5.28, an example for a hierarchical society in the RoboCup
[Noda, 1995] domain is shown. Within each sub-structure (defense line, mid-
dle field, offense line), the agents can freely communicate with any other
agent of that sub-structure. Each sub-structure also has an agent with the

5.6 Society View 169

organizational role of a “local captain” (indicated by the single boxed) that is
responsible for the communication with the team captain (double box) who
in turn manages the communication with the coach. The goalie can commu-
nicate with the captain as well as the player of defense line directly.

Instead of 132 connections in the case of a flat society, the resulting struc-
ture has only 14 connections and thus less overhead. The drawback of this
solution is, however, that in the worst case, messages from an individual
player to the coach and vice versa must be forwarded through three interme-
diate agents.

The consistency of a society refers to the agent classes within the soci-
ety and differentiates between homogeneous and heterogeneous societies. In
a homogeneous society, all agents have the same external properties such as
the underlying architecture or the set of behaviors that they have at their
disposal. Even more important is the fact that the agents all have the same
knowledge representation which enables the agents to freely exchange mes-
sages without complex and error prone translation mechanisms.

In a heterogeneous agent society, the agents can have different architec-
tures, behaviors and knowledge representation. Especially the latter makes
the interoperation between agents with different architectures difficult.

The temporal context of an agent society, finally, defines how the structure
of the agent society develops during its lifetime. In a static society, the struc-
ture is fixed from the beginning and does not change during the operation of
the system.

In a dynamic society, the structure and the interconnections be-
tween the agents can change either because of a pre-defined dynamic be-
havior specified by the system designer or due to a self-adaption pro-
cess of society in order to achieve a higher performance. Self-adapting
agent societies are a promising technology in various application fields
[Lind et al., 1999c], [Gerber et al., 1999b] and especially holonic approaches
[Gerber et al., 1999a] become increasingly interesting.

According to this general classification scheme, we can characterize the
society within the TCS/MAS system as homogeneous because all agents share
the same architecture and the same knowledge formats, semi-open because
newly created agents enter the agent society but no agent ever leaves the
society, dynamic because the structure of the society changes according to
the holonic union formation process and flat because any agent can negotiate
with any other. Based on this characterization of the TCS/MAS system, we
can now turn to developing a system design according to the above features.

5.6.2 Designing Social Systems

I will now give a prescriptive process model on how to develop the optimal
social structure for the target system. First, however, we must clarify what
the term “optimal” means in this respect as no single organizational design

170 5. Massive Views

- Efficiency
- Effectiveness
- Accuracy
- Minimal cost

- Structure
- Behavior

- Complexity
- Dynamics
- Uncertainty

Performance

Model

Organization

Environment

Fig. 5.29. Social System Perfor-
mance

is optimal for all purposes [Rawson, 1992]. According to [Carley, 1999], op-
timality of a social system depends on the tasks to be performed, the agent
capabilities, the characteristics of the environment, external constraints (e.g.
legal, political) and the goal of the optimization process.

The first four aspects in the above list are dealt with in other views within
the Massive method leaving the goal aspects to be handled in this view.
The goal of the optimization process is usually to improve the performance
of the society with respect to efficiency, effectiveness, accuracy or minimal
cost. According to Figure 5.29 (adapted from [So and Durfee, 1998]), the
performance measure of an agent society depends on its structure and the
behavior as well as on the requirements that imposed by the environment
and quantified in the attributes described above. Thus, the optimal society
structure is expressed in terms of some of the characterization developed in
the previous section e.g. by specifying maximal communication bandwidth,
channel capacity, number of available channels, quality of services or message
costs.

The social structure is then constructed according to the six step process
shown in Process Model 14. Although the process model describes a very
general way for obtaining the optimal society structure, it does not describe
the actual means the designer has in order to impose a particular structure
onto the system. This aspect is not covered in this section as this is subject of
a research field named Computational Organizational Theory [Carley, 1999]
to which we direct the reader for the solution of a particular problem.

In order to demonstrate how a society structure for a given problem can
be derived from a given society characterization, recall the description of the
TCS/MAS society from the previous section. There, the society structure was
described as flat, i.e. any agent can communicate with any other agent. This
means in terms of the TCS approach, that every new degenerated union that
handles an incoming transportation task can ask all other agents within the
system for location route sharing. This amount of communication, however,
can lead to serious performance losses in larger societies. The intended system

5.6 Society View 171

Process Model 14 Massive Society Design

1. Identify
In the first step, the goals of the optimization process are identified according
to the above characterization.

2. Quantify
The goals that have been identified in the prior step are now quantified in
order to enable the decision on whether the optimization has led to satisfactory
results or not.

3. Construct
Now, the a social structure is set up that is believed to satisfy the goals at the
required quality level.

4. Implement
The social structure that was developed in the previous step is implemented.

5. Evaluate
The structure is evaluated with respect to the quality requirements.

6. Iterate
If the social structure fulfills the quality requirements, the process is aborted.
If the results are below the previously defined quality standard, the process is
iterated from step 3.

of the system are a maximum of 5000 agents and it is easy to imagine what
communication overhead results from a flat society structure in a society of
this size.

In order to reduce the communication overhead, the TCS/MAS system
uses a technique called clustering to reduce the amount of communication
in the system. The idea of a clustering algorithm is to partition the agent
society into several groups that share particular features. The higher the
relation between the individuals in a cluster and the higher the differences
between the clusters are, the better is the clustering. The idea of clustering
is illustrated in Figure 5.30 where we can see twelve unions that are arranged
in three clusters. The clustering is not unique because two unions can be
assigned to two different clusters each.

However, to find an optimal clustering is an NP-complete problem and
thus only feasible in small societies. In the TCS/MAS system with up to 5000
agents, we have to apply heuristics to find a rather good, though usually not
optimal clustering. Let’s see how it works in TCS/MAS.

In the case of a new task that is announced to the system, any union that
is currently active will be contacted by the contract-net manager in order to
check whether it has sharing opportunities with the new task or not. Clearly,
it is a better idea to limit the class of potential bidders to those who have a
potential chance to become a sharing peer. This selection process that is ex-
ecuted whenever a contract-net is initiated is called dynamic clustering. The
goal of the dynamic clustering algorithm is to select the potential partners
for a new degenerated union that wants to find sharing partners. The idea of
the following algorithm is to filter out those unions within the society that
can never have a chance for route sharing either because the time window of

172 5. Massive Views

Fig. 5.30. Clustering

the union and the time window of the manager union are non overlapping, or
because the two unions do not have any location routes in common. Hence,
we define the maximum time window of union as the window with the earli-
est starting time of all modules within the union as the lower bound and the
latest arrival time of those modules as the upper bound. Also, we define the
em nodelist of a union as the union of all nodes of all modules.

Definition 5.6.1 (Maximum Time Window). The maximum time
window of a union U i0,...,in

j is given the lowest lower and the highest upper
bound of any module(s) in the union. More formally, let ti = Mi.TW.t∀i ∈
{i0, . . . , in} and tj = Mj.TW.t∀j ∈ {i0, . . . , in}. Then TW (U i0,...,in

j) =
[minti

; maxtj
].

Definition 5.6.2 (Nodelist).
The nodes the occur within a plan P of a module M are obtained by ap-

plying the Nodes function to the plan, i.e. Nodes(M.P) = {N1, . . . , Nn}.
The Nodes of a union U i0,...,in

j then compute to Nodes(U i0,...,in

j) =⋃
i∈{i0,...,in}Nodes(Mi.P)

Using these definitions, we can then specify the dynamic clustering algo-
rithm for a new union U as shown in Algorithm 1.

During the optimization phase of the existing schedule that uses the Sim-
ulated Trading approach, the situation is even worse because Simulated Trad-
ing is computationally expensive because the individual unions must execute
a lot of plan integration operations in order to decide whether they will want

5.6 Society View 173

Algorithm 1 Dynamic Clustering
1: P := 0
2: for all U ′ ∈ U do
3: if TW (U) ∩ TW (U ′) ∧ Nodes(U) ∩ Nodes(U ′) �= ∅ then
4: P := P ∪ {U ′}
5: end if
6: end for

to buy some offered module or not. In this case, it is important to partition
the society into groups of agents that can become potential trading partners
in order to limit the number of checks that must be performed by a single
unit. This partitioning process that is executed before a trading phase is
called static clustering.

The idea of the static clustering algorithm shown in Algorithm 2 is to pick
arbitrary unions from the set of all unions as long the newly picked unions
have no time window or location route (i.e. common nodes) overlapping with
previously picked unions. These unions become the core elements of the clus-
ters. If no overlapping-free new union can be found, the remaining unions are
assigned to the cores according to some distance measure d.

Algorithm 2 Static Clustering
1: C := 0
2: while ∃U ∈ U :� ∃U ′ ∈ C : TW (U)∩TW (U ′) �= ∅∧Nodes(U)∩Nodes(U ′) �= ∅

do
3: C := C ∪ {{U}}
4: U := U − {U}
5: end while
6: while U �= ∅ do
7: pick U ∈ U
8: find {Ui0 , . . . Uin} ∈ C such that

∀{U ′
j0 , . . . U ′

jm
} ∈ C :

X

i={i0,...,in}
d(U,Ui) ≤

X

j={j0,...,jm}
d(U,U ′

j)

9: C := C − {{Ui0 , . . . Uin}} ∩ {{Ui0 , . . . Uin , U}}
10: U := U − {U}
11: end while

To improve this algorithm further and to make it more robust, we have
implemented some additional features. One of these improvements addresses
the fact that the algorithm as presented in Algorithm 2 does not clearly
specify how the initial core elements are chosen. The wrong choice however,
can endanger the success of the entire clustering idea. If one of the first
picks of the algorithm is a large union, i.e. with many modules, that has a
low degree of overlapping, i.e. the union has many location routes and thus
many nodes, the algorithm will not find many other unions that does not

174 5. Massive Views

overlap with this large union and consequently, the number of core unions
will be small leading to large clusters. To circumvent this difficulty, we have
modified the above algorithm in that it prefers small unions over larger ones
in the first cycle. The other improvements are only of minor interest and are
therefore not discussed here.

In the preceeding sections, we have developed a rather high level model of
a multiagent application in general and of the TCS/MAS system in particu-
lar. Now, I will explain the main steps in construction the system architecture
based on the current system model.

5.7 Architecture View

The goal of this view is to transform the feature specification of the
other views into a system architecture. But what is a system architec-
ture? Because of the fact that there is no widely agreed definition for
the term in the Software Engineering community [Shaw and Garlan, 1996],
[Saunders et al., 1996], I have to select one of the existing definitions that is
most suitable for the ideas presented in this chapter.

Definition 5.7.1 (Software Architecture). The software architecture
describes fundamental structural attributes of a software system.

Although this definition is rather general and leaves some space for in-
terpretation it is nonetheless expressive enough to clearly define the focus of
this view: to model the components of the target system and the connections
between them. The software architecture is therefore a more or less static
description of the code of the target system that must, however, account for
the dynamic aspects that were defined in some of the other views. Before we
start with concrete considerations of how to find the most appropriate system
architecture, I will briefly introduce some general properties that should be
present in any architecture that is developed.

Two of the most fundamental metrics that have been introduced sev-
eral years ago are coupling and cohesion. According to [Conte et al., 1996],
coupling measures the number of interconnections among the entities of the
system and cohesion measures the internal relationships of these entities. In
a good system architecture, the coupling should be low in order to achieve
a high degree of modularization and the cohesion of the individual com-
ponents should be high in order to keep effects of particular operations as
local as possible. Furthermore, a good system architecture should try to dis-
tribute the complexity of the target system equally over the entire architec-
ture [Rombach, 1994a] as this reduces the complexity of individual compo-
nents and thus supports the designer’s understanding of these components.

Obeying these basic requirements will eventually lead to a system ar-
chitecture that supports changes because of the reduced complexity of the

5.7 Architecture View 175

Layered

Event
Systems

Communicating
Processes

Object
Oriented

Batch
Sequential

Main Program
& Subroutines

Fig. 5.31. Generic Software Architectures

individual components as well as well as reuse because of the modularization
of the architecture.

In the rest of this section, I will address some issues that are character-
istic for multiagent systems. Due to the wide range of possible implementa-
tions, however, I will not try to suggest a reference architecture [Shaw, 1995],
[Kupries and Noseleit, 1999]. The requirements for a particular system can
be so specific and individual that it would be highly unnatural to try to fit it
into a standard design. However, we strongly believe that some architectural
patterns for specific classes of multiagent systems will evolve during the next
years when multiagent technology will become more common in industrial
systems.

5.7.1 System Architecture

In order to find the most appropriate architecture for the target system,
it is useful to think first about the overall nature of the system. Then, an
appropriate design idiom, i.e. a fundamental pattern that is characteristic for
the entire design [Shaw, 1995] is chosen according to this classification.

Several of the most common design patterns shown in Figure 5.31 are
discussed in [Garlan and Shaw, 1993], [Garlan and Shaw, 1994]:

Main Program & Subroutines This is probably one of the oldest design
patterns, stemming from the time where procedural programming lan-
guages were the only available higher level languages on the market. The
characteristic feature of this pattern is the focus on the main program

176 5. Massive Views

that provides the main control loop and acts as a driver for the sub-
routines attached to it. This type of architecture is still often found,
especially in systems with a simple control flow, for example for scientific
calculations.

Batch Sequential This architectural pattern is almost as old as the previ-
ous one and has its origin in the time when memory was a valuable good
and multi-process operating systems had not yet been invented. In this
pattern, each component has a set of inputs and outputs and performs
a local transformation process that maps the inputs to the outputs. The
components are independent of each other and can be invoked sequen-
tially on a single process machine.
However, this architectural pattern may gain some new support because
it is well suited for workflow systems [Odgers et al., 1999] and supply
chain management.

Event Systems Event Systems are characterized by an asynchronous, im-
plicit method invocation mechanism that is used by the components to
communicate with each other. The idea is that each component registers
with an event dispatching system in order to receive particular events
that are issued by other components. This mechanism is called implicit
method invocation because the component that issues an event does not
explicitly request a service by another component. It may even be the
case the issuing component does not know which other components react
to the event.
The canonical example for event-driven systems are window systems that
contain a large number of and require a flexible, localized control flow.

Object Oriented The fundamental abstraction in object oriented systems
is the encapsulation of data representations and the associated operations
in a single structural entity – the object. Well defined object oriented
systems are often easier to understand then systems with a traditional
architecture because of the semantic relation of the entities in the system
with the entities they are supposed to represent. However, object orien-
tation can easily lead to an over-modularization of the system with fatal
consequences to maintenance and runtime behavior. Object-oriented ar-
chitectures are very common in applications that provide a graphical user
interface.

Layered In a system with this sort of architecture, several layers are built
on top of each other and a each layer uses services from the lower layer
and provides some service to the upper layer. Layered architectures are
the first choice when the complexity of the task can be hierarchically
decomposed. Furthermore, layered architectures support local changes
because of the well defined interfaces between the layers. The most promi-
nent examples for layered architectures are the OSI reference model
[The International Organization for Standardization, 1998] for protocol

5.7 Architecture View 177

system or the TCP [Defense Advanced Research Projects Agency, 1981]
architecture.

Communicating Processes This design pattern represents a flexible archi-
tecture for systems with several independent, interacting entities. These
entities can either reside on the same computer or they can be spatially
distributed and connected via a communication network. Examples for
this architecture include Client-Server systems as well as multiagent sys-
tems.

This list of architectural prototypes is not exhaustive but it represents
the majority of the common system architectures. However, it is often the
case that a particular system is not implemented according to a single idiom,
but according to several of them. For example, a multiagent system can be
implemented as communicating processes and also have an object oriented
architecture at the same time. In fact, we will see in the case study, that this
is the case in the TCS/MAS system.

5.7.2 The Architectural Feature Space

In the Architecture view, we are concerned with the problem of how to trans-
form the more or less abstract feature specifications of the other views into
a coherent system design. Therefore, this view will have to work on a lot of
features that are shared with other views and I will therefore first of all char-
acterize the design space of the target system. The design space is defined
as a three-dimensional space that arranges the features that are addressed
within the Architecture view according to three dimensions.

The first dimension describes a particular feature by classifying it accord-
ing to its temporal behavior. Thus, a feature can either be static in that it
accounts for a structural aspect of the system, or it can be dynamic and cap-
ture some of the relationships between the static object. Features of the first
class will therefore usually relate to components and features of the second
class will model the nature of interconnections between components.

The second dimension describes the level of granularity of a feature. This
can either be the micro level that captures properties of individual compo-
nents or it can describe macro aspects, i.e. aspects that influence the archi-
tecture of the entire system.

The third dimension, finally, differentiates features according to the pur-
pose. The purpose of a feature can be task specific or it can be task indepen-
dent. In the first case, the feature will typically represent entities that are
characteristic for the domain while in the second case, these features can be
found in several domains at the same time.

In the following, I have compiled a non-exhaustive list of selected fea-
tures that are addressed in this view and classified them according to the
three dimensional scheme. Figure 5.32 shows the relations between the listed
features. In the following paragraphs, I will discuss the features shown in

178 5. Massive Views

programming model

external devices

macro

static

dynamic

micro task independent task specific

agent functionality

database design

component design

message model

organizational framework

agent architecture

information flow
control flow

Fig. 5.32. Architectural Design Space

the Figure and demonstrate, how they are implemented in the TCS/MAS
system.

Entities No all entities that are part of the system architecture are necessar-
ily agents although the agents play the major role in the target system.
However, it is not always a good idea to encapsulate all relevant entities
into agents [Collins and Ndumu, 1998] e.g. when such an entity is fre-
quently used by several agents, it is possibly a better idea to model it as
an object that is accessed by the agents because of the communication
overhead that would accompany the approach to model the entity as an
agent. Therefore, it is the goal of this view to identify and to model the
agents and the other major objects within the target system.
The most important entities of the TCS/MAS system and their inter-
connections are depicted in Figure 5.33 and Figure 5.34.
The agents within the TCS/MAS system are created according to the
role deliminations that were discussed in Section 5.4. The union agents
are the main elements of system as they perform the local planning of
transportation routes and the local optimization procedures as discussed
in Section 5.5. The task manager is responsible for taking incoming trans-
portation requests and forwarding the to a union that serves the respec-
tive task. The net manager agent, finally, is responsible or controlling the
location route allocation process of the unions.

5.7 Architecture View 179

Fig. 5.33. System Architecture

<<agent>>
TCSUnion

+deletionCost(PL : PlanList, P : Plan) : real
+insertionCost(PL : PlanList, P : Plan) : real
+newModuleFromTask(T : TCSTask)

Trackmanager

+book(PL : PlanList) : bool
+check(PL : PlanList) : bool
+free(PL : PlanList)

GUI

TaskmanagerFailuremanager

Net

+findPath()

SimulationEngine

+getClock()

<<agent>>
Agent

-ID : AgentID

insert Task
provide failure info

provide net structure

configure

create

provide net structure

route planning

alarm
alarm

allocate routes

Fig. 5.34. System Architecture (UML)

180 5. Massive Views

The TCS/MAS system, however, does not only contain agents that ac-
complish the system functionality; several important activities are encap-
sulated into objects for the sake of simplicity and efficiency. The simula-
tion engine object is the main coordination authority of the TCS/MAS
system. It provides the system wide clock that is needed to synchronize
the concurrently active agents and it implements an alarm mechanism
that allows the agents to suspend their execution until a particular clock
cycle. Furthermore, the simulation engine supports system debugging by
allowing the designer to run the system in single-step mode.
The net object provides a route planning mechanism that can be used
by the agents to find an optimal route between any two nodes in the
network.
The graphical user interface (GUI), finally, is responsible for the visual-
ization of the system activities and for the configuration of the system
behavior. The visualization of the system state is divided in a static com-
ponent that allows the user to inspect the current status of the agents
(e.g. their current plans etc.) and a dynamic component that allows the
user to simulate the execution of the agents plans. Additionally, the GUI
provides various configuration options that can be used to change the
system behavior.
Now that I have introduced the main objects of the TCS/MAS system, I
will give a brief description of the data and control flow that is indicated
by the arrows in Figure 5.33.

Control flow Whereas the control flow at the agent level is defined by the
interaction schemes given in the Interaction view, the control flow at
the object level must be coordinated explicitly as well. Because not all
entities that occur in the target system are agents, the integration of
these entities into the system are modeled in this view.
The control flow of the TCS/MAS system is depicted in Figure 5.33. The
numbers shown in the figure illustrate the basic cycle that is executed
whenever a transportation task is announced to the system. I have left
out the plan optimization steps that were discussed in the Interaction
view in Section 5.5.
The basic execution cycle is the following:
1. The task manager receives a task description.
2. The task manager creates a new agent to handle the task.
3. The new agent requests the optimal path from the net object.
4. The new agent checks the validity of the resulting plan by querying
the net manager for the required location routes according to the
previously specified protocol (check). If the routes are not available
during the time windows of the plan, an alternative route is con-
sidered by backtracking to step 3.; otherwise the location routes are
allocated (book). This process iterates until either a valid plan is

5.7 Architecture View 181

:TCSUnion

:CommunicationUnit :AgentDirectoryService

:CommunicationUnitPeer

1:send(AgentID,Message)

2.1:Peer = getAgent(AgentID)

3:addMessage(Message)

2.2:addPeer(AgentID,Peer)

Fig. 5.35. Message Passing in TCS/MAS

found or the retry-bound is reached. In the later case, the new agent
is deleted and an error message is raised.

5. The new agent starts to execute its plan when the time is up.
Information flow The arguments that hold in the case of the control flow

can be applied to the information flow as well. Again, the information flow
at the agent level is defined in the Interaction view but the information
flow between other entities must be modeled as well.

Agent management Agent Management captures all tasks that are con-
cerned with the operational framework of the agents. This framework
includes matters such as the agent identification scheme, available ser-
vice information or firewall technology. Standards such as described in
[FIPA, 1998] can be a valuable help for the designer in this respect.
The agent management of the TCS/MAS system is quite straightforward
as it does not require a complex set-up or agent initialization procedure
because the agents are modeled as threads within a single Oz process.
Still, the communication system needs some mechanism to manage the
peer identification process in an interaction. Therefore, I have imple-
mented an agent directory service as shown in Figure 5.35. The com-
munication unit of a newly created agent registers itself with the agent
directory service and is assigned a unique identification number that is
used in any message. Whenever an agent wants to send a message to an-
other agent, the communication unit uses the agent directory service to
obtain a handle for the addressee that is used to put the message in the
in-queue of the other agent. For the sake of efficiency, the communication
unit stores this handle in a peer list so that it can avoid to query the
agent directory service twice for the same agent.

Communication model The low level communication model of the appli-
cation must be described and integrated into the system. The range of

182 5. Massive Views

:Agent :ProtocolExecutionUnit:CommunicationUnit :CommunicationUnit

send(Message)

addMessage(Message)

dispatch(Message)

addMessage(Message)

Fig. 5.36. Message Passing in TCS/MAS

possible communication techniques for a particular application is very
broad and the designer must decide on the need for synchronous or asyn-
chronous messages, one-to-one, multicast or broadcast messages etc. The
need for particular communication services can have a huge effect on the
entire system as I will illustrate in Chapter 6.
The communication model of the TCS/MAS system is built upon the
method invocation process provided by the Oz system. However, since
each agent has its own thread of execution, it is necessary to de-couple
the sending and the receiving thread. The resulting architecture of the
communication sub-system is shown in Figure 5.36. The sending agent
passes the message to its communication unit that is responsible for find-
ing the receiving agent within the system. This is achieved by using the
agent directory service provided by the agent management system as de-
scribed above. Then, the communication unit asynchronously adds the
message to the input buffer of the receiving agent and resumes the control
flow of the local thread of its parent agent. Note that an agent can be
engaged in several ongoing interactions at the same time. This is accom-
plished by spawning a protocol execution unit whenever a new interaction
process is started. The communication unit that has received the message
searches the currently active protocol execution units for the addressee
and forwards the message to it. Then, the message is added to the input

5.7 Architecture View 183

buffer of the matching protocol execution unit that handles the message
within its own thread. If no matching protocol execution unit is found,
an exception is raised.
Applying this scheme results in a flexible message passing mechanism
that on the one hand de-couples the communicating thread and on the
other hand allows an agent to be engaged in several ongoing interactions
at the same time.

Database design Especially larger systems or systems that are supposed to
operate in an industrial context usually need storage facilities and mech-
anisms that cannot or should not be proprietary. Therefore, the designer
must use standard database technology to handle these matters. How-
ever, although common database systems provide the necessary software
support, it is still up to the designer to develop a database structure that
suits the particular needs of the target system. Since database design is a
long-known topic in the computer science community, I direct the reader
to the widely available literature.

External components/devices In order to provide the required function-
ality to the user, a software system usually relies on external services
that are provided either by software or hardware components. It is one
of the tasks of the Architecture view to identify these components or
devices and to fit them into the overall system design. This integration
is achieved by defining the appropriate interfaces and the connections of
the external entities to particular entities of the software system.

Agent architecture This aspect is one of the most important and also one
of the most difficult aspects to deal with. Therefore, I have dedicated
Section 5.7.3 to the detailed discussion of this topic.

Each of these features can be characterized according to the three dimen-
sions presented earlier and arranged in a three dimensional space spawned
by these dimensions as shown in Figure 5.32.

In some cases, the decision on which of these idioms to apply for a specific
target system might be straightforward. In other cases, where the decision
is not so obvious, I can only provide as an advice to the system designer
to briefly apply the above idioms to the target system in order to develop
a feeling for how a system might look that is implemented according to a
particular idiom and then to select the most appropriate. Unfortunately, up
to now no generally applicable set of guidelines exists that can help the de-
signer in choosing the best architectural idiom. As it was said above, a major
aspect in the system architecture is the agent architecture that implements
the runtime environment for the role descriptions. In the next section, we will
discuss the main aspects of agent architectures and how this topic is treated
in the TCS/MAS system.

184 5. Massive Views

5.7.3 Agent Architecture

One of the most important aspects of multiagent system development is to
define the basic entities within the system – the agents. As I have already
discussed in Section 5.4.2, an agent is a conceptual abstraction the consists
of a set of roles and an architecture that implements these roles. Thus, we
define the term “agent architecture” as follows.

Definition 5.7.2 (Agent Architecture). An agent architecture is a
structural model of the components that constitute an agent as well as the
interconnections of these components together with a computational model
that implements the basic capabilities of the agent.

To select the best agent architecture for a given set of roles is as least as
a big a problem as to find the best architectural idiom as discussed in the
previous section. Therefore, I recommend the following two step process to
identify the best architecture from the numerous architectures that are cur-
rently on the market [Müller, 1996a],[Müller, 1998]. First of all, the system
designer should characterize the requirements for the architecture accord-
ing to fixed scheme that covers the most important issues to be addressed.
Second, the designer should evaluate existing architectures according to the
requirements defined in the first step and then select the best matching archi-
tecture. I strongly recommend to check existing approaches before trying to
define a proprietary architecture. Only if no matching architecture is found,
the burden of designing an implementing a new architecture is justified. Even
in this worst case, the developer should consult the existing literature (e.g.
[Jung, 1999]) in order to avoid sub-optimal results.

To address the first aspect of this two-step process, I have defined the
following set of properties that can be used to characterize the requirements
for the agent architecture.

Reasoning capabilities The reasoning capabilities of the agents define the
most important property and often determine the overall complexity of
the agent architecture. For example, an agent may be forced to plan its
actions if it is not a purely reactive agent, or it may use some utilitarian
reasoning mechanisms to chose among several possible actions. Another
important issue is the ability for an agent to learn from past experiences
or the agent may be used to fulfill special tasks such as theorem proving
etc.
The TCS/MAS agents must have a planning unit to find their way
through the railroad network and to detect route sharing possibilities
with other agents. Furthermore, the agents must encompass some sort
of reactivity when it comes to the plan execution simulation and failure
handling.

Resource limitations This aspect of the characterization describes the re-
sources that are available to a single agent within the multiagent sys-
tem. If an agent has a very limited amount of processor time or memory

5.7 Architecture View 185

space, it is impossible to use an agent architecture that requires, say, the
resources of a Unix process. However, this point can also be viewed from
a different angle. If the individual agent has to deal with very complex
problems, a simple architecture may not be able to cope with the resource
requirements of the architecture because it was not designed for heavy
weight problems.
An individual agent within the system has only limited computational
resources because of the expected size of the target system with approxi-
mately 5000 agents running in a single Oz process. Therefore, the agents
must not be too complex as efficiency is a crucial factor due to the non-
functional requirements given in Section 5.3.

Control flow The aim of this requirement is to characterize the control flow
that is needed within the agent. First of all, the designer should decide
whether a sequential flow of control is sufficient or if the agent is required
to do several things at the same time and thus needs some parallel action
execution model. In the second case, a concurrent architecture that in
most case is much more complex then a sequential architecture must be
chosen.
Second, the designer must decide about the required flexibility of the
control flow. In a more static setting, the flow of control can be explicitly
hard-coded into the architecture while in a dynamic context, the flow
of control is likely to undergo changes and must therefore be described
implicitly e.g. in plan scripts that are interpreted at run time and that
can be changed while the agent is in operation.
The control flow within an agent is fixed over time and there is no need
for a flexible, explicit representation of the control flow. However, an
agent can potentially engage in several interactions at the same time and
will also need to monitor the plan execution process while negotiating
with other agents. Therefore, the agent needs a parallel action execution
model in its architecture.

Knowledge handling The knowledge representation within the target sys-
tem is defined in the Task view. In the Architecture view, the knowledge
structures that are defined there must be characterized in order to de-
cide which architectural features are necessary to effectively handle these
structures.
First, it is important if the agents knowledge is stored explicitly in a
knowledge base or is it encoded implicitly into the agent code. Second,
the knowledge structures may be represented in a symbolic manner using
some sort of logical formulae or in a sub-symbolic form e.g. in its simplest
form as collection of values or more elaborate in the form of a neural
network.
The major knowledge structures of the agents are the plans that hold the
nodes, travel times and coupling activities of the agents. These plans are
likely to change frequently and they must be interpretable by humans.

186 5. Massive Views

Therefore, the plans are explicitly represented and kept in the knowledge
base that must be provided by the agent architecture.

Autonomy The degree of autonomy that is required by the agent defines
how the agent interacts with its environment. A reactive agent simply
responds to external stimuli by reproducing a pre-defined behavior when
a particular stimulus is given by the environment. A pro-active agent,
on the other hand, can become active without external trigger and then
perform some action that satisfies the goal. Pro-active agents are usually
more complex and their behavior is not always predictable.
The degree of autonomy of the agents varies in the different tasks they
perform. In the optimization activities, the degree of autonomy is quite
low as the agents only react to a sharing offer by a newly created union.
However, things are different in the case of the plan execution facilities.
Since failures of location routes must be handled by the agents, the re-
planning process offers them the possibility to autonomously adapt their
current plan whenever its is needed. Still, the agents do not implement
pro-active behavior.

User interaction The more interaction the agent has with the user, the
more elaborate the user interface has to be in order to provide conve-
nient means for input and output data. Furthermore, an advanced user
interface agent will perform user profiling and try to learn the users pref-
erences from his or her input/output behavior.
There is very little user interaction between the user and the TCS agents
and thus the user interface is limited to presenting the plan and the
current coupling state to the user and to allow the user to trigger plan
execution.

Temporal context This aspect characterizes the agents lifetime. Obviously,
an agent with only a limited activation time will need another form of
persistence mechanism – if any at all – then a long-running agent. Persis-
tence refers to the ability of the agent to maintain knowledge structures
over time and over unavoidable down-times due to service failures such as
hardware or software crashes. However, the amount of information that
is collected by the agent over its lifetime can become very large and must
be handled in an effective manner. Thus, the architecture must provide
means to manage the data handling process.
The lifetime of the agents ranges over a few hours and is therefore rather
short. However, the system must provide some persistence mechanism to
allow the user to store and retrieve schedules generated by the system.

Decision making This attribute characterizes the way in which the agent
comes to its decisions during its reasoning processes. While some au-
thors claim that rationality is an inherent property of any agent
[Russell and Wefald, 1991], [Russell and Norvig, 1995], there are others
who consider architectures that support emotional decision making as an
alternative [Burt, 1998], [André et al., 1999]. There are two main fields

5.7 Architecture View 187

Fig. 5.37. InteRRaP

for a potential application of emotional architectures. First, they can
become valuable tools to implement lifelike characters and avatars that
represent a human user in networked environments. Second, the notion of
emotions can be used to express complex heuristics for advanced software
agent in a natural way. However, the development of the basic technology
is still in its beginnings and does not play a relevant role until now. Still,
the developer of a particular application may want to consider these ideas
if they are appropriate for the problem in question.

In the TCS/MAS system, I have used the InteRRaP agent architecture
[Müller, 1996b] that provides most of the above features and that was also
successfully used in the TeleTruck [Bürckert et al., 1998] system which
shares some similarities with the TCS/MAS system.

The InteRRaP architecture is a generic agent architecture for situated
agents that integrates reactive behavior and deliberation. The architecture
was designed for agents that exist within multiagent systems and thus some
emphasis is on the communication aspect. As depicted in Figure 5.37, InteR-
RaP is a layered architecture that consists of three layers, each consisting of
concurrent processes:

Behavior Based Layer (BBL) This layer implements the reactive behav-
ior of the agent, i.e. this layer reacts to external requirements without
any explicit reasoning, thus it reacts very fast.

Local Planning Layer (LPL) This layer performs the planning process of
an individual agent, it is also responsible to monitor the plan execution
of the agents current plan.

Social Planning Layer (SPL) This layer is responsible for the coordina-
tion with the other agents within a multiagent system. The coordination
with the other agents is achieved with explicit negotiation protocols.

188 5. Massive Views

Fig. 5.38. Union Agents

All layers run concurrently, the intra-agent coordination between the three
layers is achieved via the knowledge-base. The knowledge base is conceptually
divided into three layers (world model, mental model, social model), but
each computational layer has access to the knowledge on every level of the
knowledge base. The conceptual discrimination, however, allows for a clearer
design because most of the information stored in the knowledge base can be
associated with a particular layer.

The InteRRaP architecture offers a generic framework for agent design
that must be instantiated for the particular needs of a concrete scenario.
Usually, some aspects of the generic framework are more interesting in a
given scenario than others; in the TCS/MAS system, the emphasis of the
instantiation is on the local planning layer and the social planning layer, the
behavior based layer is not as important right now. However, in a later version
of the system with a more realistic plan execution simulation, the BBL will
gain more relevance.

A functional decomposition of the relevant parts of the union agents is
shown in Figure 5.38.

Communication Unit (CU) The communication unit implements the so-
cial planning layer of InteRRaP and is thus responsible for executing the
negotiation protocols between the agents. These protocols are used for
the social planning process of the agent society in order to optimize the
global schedule and to handle the location route allocation process.

Planer The local planning unit of the TCS unions uses the shortest path
service provided by the net object and the route allocation protocol of

5.7 Architecture View 189

<<agent>>
TCSUnion

+deletionCost(PL : PlanList, P : Plan) : real
+insertionCost(PL : PlanList, P : Plan) : real
+newModuleFromTask(T : TCSTask)

Planer

-parent : TCSUnion

+integrate(PlanList :) : NewPlanList
+makePlan(Spec : , Request : PlanRequest) : Plan

PlanExecutionMonitor

SimulationEngine

+getClock()

TCSModule

+getCurrentPlan() : Plan

<<thread>>
CommunicationUnit

-peerList

+addMessage(M : Message)
+addPeer(ID : AgentID, Peer : Agent)
+dispatch(M : Message)
+send(ID : AgentID, M : Message)

<<thread>>
ProtocolExecutionUnit

{Abstract}

-parent : CommunicationUnit

+addMessage(M : Message)
+initCooperation(Peers : , Type :)
+main()

CN_Bidder

+computeBid()
+main()

CN_Manager

+announceTask()
+collectBids()
+findBestBid()
+informBidders()
+main()

ST_Trader

<<agent>>
Agent

-ID : AgentID

Configuration Options:
initCooperationTimeout

Configuration Options:
collectTimeout

AgentDirectoryService

+deRegister(A : Agent)
+getAgent(ID : AgentID) : Agent
+register(A : Agent)

Net

+findPath(FromNodeID : , ToNodeID :) : NodeIDList

+Parent

1

+Child

*

+parent 1

+child *

1

1

1

1

1

1

Fig. 5.39. Union Agents (UML)

the net manger to find the local plan for an agent. Details of the local
planning process are discussed in Appendix B.1.

Plan Execution Monitor (PEM) The plan execution monitor resided on
the behavior-based layer of the agent architecture and monitors the exe-
cution of the current plan of an agent and adapts the plan in the case of
external events, e.g. location route failures etc.

The arrows between the agent and the other parts of the system shown in
Figure 5.38 indicate the connections of an agent to the outside world. Each
arrow between the communication unit and another agent represents a logical
connection that is used to execute the negotiation protocols between the
agents. The connections to the simulation engine, the graphical user interface
and the net object, on the other hand, are achieved by method invocation
within the object system. Figure 5.39 show the UML class diagram that
corresponds to the InteRRaP implementation within the TCS/MAS system.

In this section, I have outlined the basic objectives of the Architecture
view with some emphasis on the overall architectural paradigm underlying a
particular application and on the agent architecture because of its complexity
and because the agents are the main entities in a multiagent system. In the
next section, we will complete our tour through the generic view system of
Massive with a view that collects those aspects of a system that usually
cannot be assigned to a single view alone.

190 5. Massive Views

5.8 System View

The main idea of the general view system is to structure the features of the
target system according to their conceptual and logical links. However, some
aspects of the target system are spread all over the system making it difficult
to assign them to a particular view. Therefore, I introduce the System view
that covers the aspects that affect multiple views or even the system as a
whole.

5.8.1 User Interface Design

In this section, I will discuss some issues that are related to the user interface
of the target system. Today, the main interface between a program and the
user is usually a graphical user interface (GUI) and so I will limit the scope of
this section to GUIs only. The user interface does not only play an important
role with respect to the intended use of the system, but it is also important
for the designer to know that in most applications, more then 50% of the
total system size are dedicated to the UI. However, due to limited space,
we can only briefly mention some basic aspects and direct the reader to the
literature for more information.

In the case of a multiagent application, the user interface can serve two
major purposes. First, it can manage the task-specific user interaction which
is to accept inputs from the user and in turn to present the results of pro-
cessing the input data. Second, the user interface can be used to monitor and
manipulate the system activities of the multiagent system, i.e. the designer
(and later the user) must be able to trace the systems activities. The con-
current, distributed approach to problem solving makes this a difficult task
that must be carefully executed. Monitoring the system activities is also of
vital interest for the development phase of the system with respect to de-
bugging. For monolithic systems, debugging features are supported by the
programming language or a development environment; in the case of multia-
gent systems, however, only little or no support is given by existing languages
and environments. Thus, either standard agent development frameworks such
as ZEUS [Ndumu et al., 1999] must be used to visualize the system activities
or the system designer must develop and integrate the facilities to support
tracing and debugging into the design.

Despite the requirements of a particular class of applications, however,
any user interface should comply with the following principles [Galitz, 1997].

Clarity The entities of the GUI should be clearly related to the entities they
represent in the real world and they should be given unambiguous names
or icons.

Comprehensibility The user interface should be intuitive to use and pro-
vide an understandable access to the system functions. The key questions
that describe this property are What to look at?, What to do?, When to
do it?, Why to do it? and finally How to do it?.

5.8 System View 191

Consistency An individual entity should have the same representation even
if it occurs in different contexts and actions should always lead to the
same results in order to guarantee some sort of predictability to user.
Furthermore, the windows, dialogs etc. should have a consistent layout
and appearance throughout the entire user interface.

Directness The user interface should provide a direct and intuitive access
to accomplish the tasks. For example, complicated parameter settings in
several menus before a function can be activated should be avoided.

Control It is important to design the interface in a way the provides the
user with the feeling the he or she controls the behavior of the system
and not vice versa.Thus, the system should query the user before taking
action and it should keep the user informed about ongoing computations,
loading processes etc., for example by showing an hourglass whenever an
action is started.

Thus, a good user interface reflects the needs and capabilities of the user,
obeys physical constraints of the hardware and conforms with existing stan-
dards. Our recommended iterative design process for the user interface con-
sists of seven steps as shown in Process Model 15.

The seven steps of Process Model 15 are independent of a particular
programming language or window system and can thus be used to guide the
interface design on a very general level of abstraction. In order to speed up
the development of the user interface, it is highly recommended to make
use of existing software libraries such as Tcl/Tk [Ousterhout, 1994] or Gecco
[Knecht, 1996] in order to benefit from off-the-shelf components for standard
user interface elements.

The graphical user interface of the TCS/MAS system supports the de-
tailed inspection and monitoring of the ongoing computation as well as the
off-line analysis of simulation data obtained in batch-mode of the system.
The main elements of the GUI are shown in Figure 5.40 which contains a
screen shot of the TCS/MAS system with number of monitoring and statis-
tic elements.

Map Window The Map window shows the underlying railroad network and
can be used to visualize the plan execution process of the unions. It serves
also as the main entry of user interaction as it contains the menu bar that
controls all major functions of the system.

Task Viewer The Task viewer is used to browse the task file that is cur-
rently loaded. For each task, the module identification, the module type,
the module length, the source node, the destination node, the earliest pos-
sible departure time, the latest allowed arrival time and the time when
the task is announced to the system are shown.

Union Browser The Unions browser shows the current union structure of
the system, i.e. which modules are connected in a particular union. The
user can select one or more of these unions to check for the current state

192 5. Massive Views

Process Model 15 Massive User Interface Design

1. Know your user In this step the user groups are characterized according
to their experience, the estimated use frequency, their skills (e.g. typing or
other input devices), the available amount of training, their motivation etc.
This characterization will help the designer to develop a general idea of the
user interface. It is, for example, a completely different task to develop a user
interface for a novice that uses the system occasionally or for an expert who is
familiar with similar applications and who regularly uses the system.

2. Relate to the system The initial idea of the interface must then be related
to the system that it is indented to represent towards the user. Therefore,
the designer identifies potential points-of-interaction between the GUI and the
underlying system. These points-of-interaction are all features that can be vi-
sualized or manipulated by the user.

3. Check standards Before the real design process of the particular user inter-
face starts, the designer should check its initial idea against existing standards
and the constraints they may impose on the interface. This step is important
in order to avoid a user interface that is not generally accepted by the user
community. However, if the entire target system is a customized application,
deviations from the standard may be tolerable.

4. Define menus The menus that usually appear on top of the application win-
dow define the overall structure of the GUI as they are usually the first entry
point for the user. The menus should be related to functional groups within
the system and have speaking names in order to enable the user to relate the
menu titles and entries to particular functions of the system.

5. Select windows In this step, the windows that represent different aspects of
the system are being built. First of all, the designer must decide which infor-
mation should be grouped together in a single window and then the following
steps are executed for each window:
a) Select presentation techniques The most appropriate presentation

technique, e.g. textual, graphical or audio representation, is chosen for
each of these groups and their elements.

b) Select the appropriate screen-based controls The control elements
include the entire palette of tools offered by most existing window system
interfaces, e.g. text inputs, slide bars, list pickers, etc.

c) Create the layout In this step, the presentation and control elements
are arranged within the window.

6. Create a help system The help system is an important issue in a user inter-
face when the interface reaches a particular level of complexity. The designer
should provide two types of help to the user, the first one is a general help
system that can be queried for specific topics by the user and the second is
context-specific help that is activated by the user on-the-fly e.g. by pressing a
mouse button while the mouse pointer is over an input field.

7. Evaluate the interface design The user interface is ideally checked by se-
lected users if they are available. If the current version of the user interface
fails in one of the aspects described above, the entire process is re-iterated
from step 1.

5.8 System View 193

Browser
Plan
Module

Union
Size
Statistic

Union
Browser

Map Window

Union Detail Browser

Fig. 5.40. Elements of the TCS/MAS GUI

of the unions, e.g. for the current coupling state of the union or the
user can trigger the plan execution process for these unions to check the
validity of their current plan.

Plan Browser The Plan browser is started from the Union browser window
and allows for an even closer look at the plans of the modules that make
up the union. For each module, the Plan browser shows a sequence of
nodes where each of the nodes consists of the node identifier, the earliest
possible arrival time in the node, the latest allowed departure time from
the node, the scheduled arrival and departure times and the actions that
must be executed in the node. For each action, the scheduled time window
and the peer modules are also shown.

Statistics Viewer The Statistics viewer is a collection of tools that enable
the user to examine various properties of the current schedule. The Union
statistic shows the distribution of the unions in the system over the pos-
sible union sizes, the Coupling Node statistic uses the Map window to
visualize the nodes in the system that are scheduled for coupling activ-
ities, the Source and Sink Node statistic also uses the Map window to
present the nodes where the freight is picked up from or delivered to,
and the Location Route Monitor, finally, exhibits the usage statistic for
every location route that is used in any module plan.

Trading Monitor The Trading monitor can be activated by the user to
scrutinize the hypothetical trading operations between unions as well as
the trading match that is computed by the stock manager. Whenever
the Trading monitor is active, the user can interactively decide whether
a particular match is accepted or not.

Communication Monitor The Communication Monitor, finally, is used
to visualize and inspect the messages that are exchanged between the

194 5. Massive Views

agents. The user can see the messages that are sent by one agent to
another and can click on a particular message to inspect the contents
that are communicated.

Although user interface design is probably the most important and most
extensive view that covers system-wide properties there are still other aspects
probably not as exposed as the user interface that affect the system as a
whole. These facets will be discussed in the subsequent sections.

5.8.2 Exception Handling

This aspect of the System view describes the exception handling policy of
the target system – a feature that is usually spread all over the entire sys-
tem and that effects almost every part of the target system. However, the
term exception is usually used in a lot of different contexts as the following
definition shows.

Definition 5.8.1 (Exception [Lang and Stuart, 1998]). An exception
is the union of error, exceptional case, rare situation and unusual event.

In order to provide a structure for the different aspects that are
covered by the term, the following categorization was suggested by
[Cox and Gehani, 1989]. Software or design errors are caused by implementa-
tion mistakes in the software, e.g. dividing by zero, array index range errors,
incorrect loop conditions etc. Hardware errors are the result of failures of the
underlying hardware such as memory leaks, sensor failures etc. State errors
occur if the systems model of the environment is inconsistent with the actual
state of the environment; this kind of error is often found in robotic ap-
plications. Timing errors.finally can occur only in real-time systems and are
caused by the violation of timing constraints or resource (processor, memory)
overload.

In the System view, however, we are only interested in software and de-
sign errors and how to handle them. In order to describe the error handling
strategy of the target system, it is often useful to characterize the indented
mechanism according to the following scheme.

Scope The scope of the error handling mechanism can either be local or
global. A local strategy aims at the individual components of the system
and specifies the error handling activities from the individual point-of-
view.
A global strategy, on the other hand, introduces a central authority to
which all errors are reported and that handles the exceptional situation
according to a given plan. Multiagent system seem to naturally suggest
a localized exception handling scheme. However this can make it some-
times difficult to cope with temporal information e.g. when the designer

5.8 System View 195

needs to detect the exact temporal ordering of exceptions during the de-
bugging phase. In this case, a global scheme can significantly reduce the
development cost although the idea of a central authority opposes the
basic multiagent idea.

Purpose The purpose of the exception handling process can be error de-
tection or error recovery. The first case is easier to handle as it simply
requires some sort of notification mechanism to indicate the presence of
an exceptional situation to the designer or the user. Error recovery is
usually much harder to achieve as it requires a thorough analysis of the
current system state and explicit knowledge of how to handle a particular
failure. However, in certain types of multiagent system, this type of ex-
ception handling will have to be considers as a simple system shut-down
may not be an acceptable behavior.

Technology The technology aspect of the exception handling mechanism,
finally, deals with the concrete implementation of this mechanism. A
language-based approach uses the constructs of the underlying program-
ming language to implement the exception handling strategy whereas an
operating system-based approach makes use of services provided by the
platform on which the target system is running. The choice of the best
technology is a difficult matter that requires to weight several factors ac-
cording to the requirements of the target system. While a language-based
approach is usually easier to use and is mostly platform independent,
it nonetheless depends on the expressive power of the target language
which might be too limited for most multiagent applications. An operat-
ing system-based approach, on the other hand, is usually more platform
dependent but also usually provides more flexibility to the designer.

Finding the exception handling strategy that is suited best for a particular
target system is not easy and may have consequences for the entire system.
Thus, it is usually a good idea to consider this aspect quite early in the
development process, ideally before the actual implementation is started.

Because of the prototypical nature of the TCS/MAS system, I have re-
frained from implementing an elaborate exception handling scheme in order
to simplify the design of the system at the expense of stability in case of
unforeseen events. Thus, the exception handling mechanism that is imple-
mented features only the basic requirements in that it is local, is used only
for error detection and is language-based.

Locality means, that each entity performs its own error monitoring process
and does not report failures of any kind to a central authority. This is not
necessary as the goal of the exception handling process is only error detection
and not the recovery from unexpected system states. The TCS/MAS system
uses the exception notification mechanisms provided by the runtime system
of Oz to detect design errors and to report them to the developer or user. It is
then up to him or her to take the appropriate action to prevent the situation
that lead to an error in subsequent activations of the system.

196 5. Massive Views

Identify
Bottlenecks

Set
Objectives

Performance
Improvement

Cycle

Understand
the Code

in Terms of
Computations
and Requests

Fig. 5.41. The Performance Engineering Process

Change
Code

Plan Test

Done

Measure

Done

Execute

Execute

Evaluate

Evaluate

Measure

Fig. 5.42. The Perfor-
mance Improvement Cycle

5.8.3 Performance Engineering

In this section, I will discuss some ideas that deal with performance aspects
of the target system and I will present a micro process model for the Perfor-
mance Engineering process taken from [Rational Software, 1999b].

Definition 5.8.2 (Performance Engineering). Performance Engi-
neering is a method to identify and reduce or eliminate performance prob-
lems during the software development cycle after the code has been designed
and developed.

The Performance Engineering process shown in Figure 5.41 is summarized
in Process Model 16. The fundamental step in this process is to identify the
bottlenecks that are responsible for performance losses in the target system.
Some of the major causes for bottlenecks are listed below.

Useless computation Useless computation is often the result of program
changes that make parts of the original code obsolete without removing
the then unnecessary code fragments. Another source of useless compu-
tation are default computations that are executed even if they are not
required, for example opening connections to remote agents by default
can have severe effect on the systems start-up time.

5.8 System View 197

Process Model 16 Performance Engineering

1. Understand In the first step of the Performance Engineering Process the de-
signer must develop a “feeling” for the runtime behavior of the application.
This is best done by dividing the application into several phases (e.g. initial-
ization phase, input passing, etc.). Then the designer can decide, according
to the separation of the runtime behavior, which phases are the most time
consuming and focus the attention on these phases as improvements in these
phases are likely to yield the highest gain in performance.

2. Identify The goal of this step in the Performance Engineering Process is the
identification of potential bottlenecks in the selected phases of the application.
The sources of bottlenecks are manifold but is still possible to identify some
prototypical classes that cover most existing bottlenecks.

3. Set Goals When the potential bottlenecks are identified, the designer must
set quantifiable goals in order to prioritize the bottlenecks according to their
relevance. Several criteria for this are possible, the most obvious being the
potential performance improvement. However, the cost (effort) to remove a
particular bottleneck should always be weighted against any potential gain.

4. Performance Improvement Cycle The goal of this, most important step
in the entire process, is to isolate and eliminate a particular bottleneck. The
Improvement Cycle as shown in Figure 5.42 consists mainly of six activities.
First of all, the test for a particular bottleneck must be carefully planned in
order to enable the designer to focus on the performance aspect under con-
sideration and to exclude any effects that might have influence on the result.
Next, the test is executed and the performance of the program is measured. If
the evaluation of the test results show, that the performance is already satis-
factory according to the previously defined quality standards, the Performance
Improvement Cycle can be aborted. If the performance is below the defined
measure, the code is changed in order to remove the bottleneck and the test
is executed again. If the next measurement shows that the code change has
yielded the desired effect, the cycle is aborted. If this is not the case, the cycle
starts again and repeats until either the performance goal is met or the effort
exceeds a defined amount.

Re-computation This bottleneck is the result of computing results al-
though the could be cached for later use. The following example shows a
very simple case of re-computation

if X.getRow() != MAXROW then
StartRow == X.getRow() + 1;
...

end

In the example, the getRow operation on object X is called twice although
it could have easily been cached as follows

Tmp = X.getRow();
if Tmp != MAXROW then

StartRow == Tmp + 1;
...

end

198 5. Massive Views

However, this is a rather trivial example that is often detected and re-
moved by the compiler, but it can nonetheless have some impact on the
overall runtime behavior e.g. if the getRow function is computationally
expensive or when the entire code sequence occurs within a loop.
Generally speaking, the higher the effort to compute a particular re-
sult and the more often it is needed, the higher is the performance gain
through caching.

Waiting for service requests to complete Whenever a program re-
quests a service from the operating system, it is typically blocked until
the request is completed. Requests to the operating system are quite fre-
quent in any computer program and consequently, some attention should
be paid to these calls and how they can be reduced or transformed such
that they are less vulnerable to external effects.
Prominent examples for this kind of bottlenecks are file access and mem-
ory management. In the first case, for example, the designer can make
sure to be independent from network delays while accessing a file on a
file system that is mounted via NFS if the file is read once and then
kept in memory for further fast access. Obviously, this does only yield
performance gains if the file is accessed more then once. In the case of
memory management, it is sometimes useful not to rely on the mem-
ory management of the operating system. Allocating a large block of
memory and then organizing the memory management locally is often
a valuable alternative to the service provided by the operating system
[Kernighan and Pike, 1999]. However, even doing so does not prevent the
application from being delayed because of page faults and heavy swap-
ping. If this occurs, other mechanisms to speed up memory access must
be found.

Wrong or missing assumptions about the runtime system This
kind of bottleneck can often be found in the use of function parameters
or local functions. Whenever a data structures is passed to a function
using the call-by-value mechanism, the entire data structure must be
copied on the stack and back again when the function is done. In the
case of large structures, this copy operation can take a long time and
additionally slow down memory access in the function body. Therefore,
any call-by-value with a large data structure should be replaced with
a call-by-reference even if the data structure is not changed in the
function.
Local functions are a similar problem as the are often generated on the
heap at runtime. This takes additional time and memory and should
be avoided in frequently called function. I will discuss the impact of
eliminating local functions in Oz programs in the case study below.

Non-scalable algorithms or data structures This is a performance
killer that is often found in applications that were developed and tested
for small example data and that fail to work with the real operational

5.8 System View 199

data. A simple example is the following: assume, an agent has a list in
which it stores all its acquaintances and that it looks up by performing a
linear search whenever it sends a message and that is updated by append-
ing a new entry whenever it receives a message from a formerly unknown
agent. As long as the system is small, the effect of this list search and
update mechanism can be neglected. However, if the system is scaled up
to several hundred or even thousands of agents, this scheme will lead to
performance losses that could be avoided by using a more efficient search
strategy and/or a better data representation.

The initial performance of the TCS/MAS showed a promising behavior
although the number of agents that were active in the system was quite
high with approximately 5000 agents for the largest examples. Nonetheless,
however, it was possible to increase the system performance by a factor of
six by performing two rather simple nonfunctional optimizations.

Using the profiler that comes with the Oz distribution, I was able to
identify several bottlenecks in the actual implementation of the system. The
first bottleneck was due to my lack of knowledge of the runtime system of Oz
and the second bottleneck was a suboptimal design in a basic data structure.

Let us begin with the runtime behavior of Oz. Whenever a member func-
tion of a class contains a local function, the closure of this local function
is constructed on the heap a runtime, i.e. whenever the member function is
called. The following example shows an example for a local function that is
used to implement a loop - a method that is quite common in Oz programs.

class A
meth findElem(List Key ?Result)

FindElem = fun{ $ List Key }
...

end
in

Result = {FindElem List Key}
end

end

Thus, whenever findElem is executed, the runtime system builds the
closure of FindElem on the stack and removes it after findElem is done.
This mechanism does not cause any problems as long as findElem is not
called frequently in the application.

In the TCS/MAS system, on the other hand, I had a small number of
functions that used local functions and that were themselves used millions
of times in the course of a system run. These functions were identified using
the profiler and their code was re-written as illustrated below.

200 5. Massive Views

local
FindElem = fun{ $ List Key }

...
end

class A
meth findElem(List Key ?Result)

Result = {FindElem List Key}
end

end

This rather trivial re-arrangement of code fragments brought a perfor-
mance enhancement by a factor of four and thus by far justified the effort
and the break of the principle of locality of computation.

The second bottleneck in the implementation was a combination of the
use of a sub-optimal algorithm and re-computation and was caused by the
class that encapsulates the network data of the underlying railroad network.
The Net class maintains the list of links within the network and provides
a member function that takes a link identification number as input and re-
turns the matching link object to the function caller. In the first version of
the TCS/MAS system, I used a small network of approximately 25 nodes to
develop the basic planning algorithms in a controlled environment of limited
size. Therefore, the list of links was relatively small and the member function
that mapped link identifications to links was implemented as a sequential
search over the link list. As the system was upgraded to the full network,
however, the search algorithm was not reviewed with respect to the higher
performance demand in a 350 node network and remained in place. Again,
the profiler of Oz lead to the this function that was responsible for the per-
formance bottleneck. The search process was replaced by a direct mapping
that was held in a dictionary and the performance gain was about a factor
of 1.5.

The rather simple nonfunctional optimizations of the TCS/MAS system
clearly show, that it pays for the system designer to carefully monitor the sys-
tems runtime behavior and that large performance gains are not necessarily
hard to achieve.

In this section, I have presented a general-purpose micro process model
for Performance Engineering. However, Performance Engineering is not nec-
essarily applied to the entire system, but it can also be applied to specific
parts of it [Smith, 1997]. Furthermore, Performance Engineering is closely
related to Refactoring [Fowler, 1999] and some of the micro process models
that are suggested for the refactoring process can be used for Performance
Engineering as well.

5.8 System View 201

Release

Installation

Activation

De-activation

De-installation

De-release

Update Adapt

Fig. 5.43. Deployment
Life cycle

5.8.4 Deployment

Definition 5.8.3 (Software Deployment [Hall, 1999]). Software de-
ployment is the process that covers all of the activities performed after a
software system has been developed.

The complexity of the deployment process depends on the complexity of
the software and the required system environment. Planning of this process
is essential for a successful implementation of the target system at the user
site.

The deployment life cycle of a software system consists of eight steps as
depicted in Figure 5.43.

Release This step is the interface between the development and the deploy-
ment process and includes all activities that are necessary to package the
software system as well as the knowledge to set in operation at a user
site.

Installation This step is usually the most complex activity because it must
find and assemble all necessary resources. In this step the system as
well as the external resources such as libraries, software packages etc.
are either initially deployed at the user site or updated according to the
required versions.

Activation The activation of a software system refers to the process of start-
ing the participating components in order to get the system running. For

202 5. Massive Views

simple software systems, this may require only to push a button or to en-
ter a command line. More complex systems, however, may require more
sophisticated, coordinated activities in order to bring all components into
operation.

Update Updating am already installed software system means to modify it
in order to add new functionality or to remove bugs. Updates are issued
by the software provider and taken up by the clients.

Adapt The adaption of an installed system differs from an update in that the
former is limited to local changes only while the latter refers to potentially
all installed systems as a whole. Adaption thus refers to changes of the
system at a particular site in order to adapt it to changes in the system
environment.

De-activation De-activation is the inverse process to the activation of the
system and refers to a controlled shut-down of all components involved
in running the system.

De-installation When the system is no longer required at a user site, it
must be removed from the site. This it not necessarily a trivial process
because attention must be paid to not disturbing the system environment
of the user site e.g. by the deletion of shared resources. Thus, this step is
not the process of undoing everything that was done upon the installation
of system but it requires an analysis of the current state of the user site
to detect dependencies of other software systems on resources that were
installed with the target system.

De-release The final step in the deployment life cycle is reached when a
system is regarded obsolete and it is no longer developed or supported
by the manufacturer. This step is distinct from the previous one in that
it does not mean that the system cannot be used any longer. Rather, the
users are free to use the system but they should be aware that no further
support will be available.

The deployment of a particular system is usually a highly individualized
task and thus hard to capture in a general process model. The following
generic deployment process model is thus described at a rather high level
of abstraction and will need to be tailored according to characteristics of a
specific project. Basically, the deployment process consists of five steps as
shown in Process Model 17.

This five-step generic deployment process covers the major parts of the
deployment life cycle shown in Figure 5.43: the release of a particular system
is described in step 1, the installation in step 4, the activation in step 5
and the update activity of the life cycle is captured in steps 1 and 4. Other
activities in the life cycle are not directly covered but the can make use of the
gathered information, e.g. the de-installation will certainly use the component
characterizations and the dependency information when removing a system
from a particular site.

5.9 Summary 203

Process Model 17 System Deployment

1. Identify and characterize components
The components that are relevant for the planning of the system deployment
are for example the executable files, data sources, hardware devices, external
(software) components etc. Each of these components is characterized for ex-
ample by the site characteristics were it should be installed, the deadlines it
must hold, its availability or a version specification. The goal of this step in the
planning process is to obtain a complete picture of every entity that is related
to the target system in one way or another.

2. Describe dependencies
In this step, the dependencies between the components are explicitly modeled.
A dependency is for example a “uses” relation between components or temporal
precedences in the installation process that must be maintained. Note that
dependencies can vary between different user sites.

3. Define Activities
For each component, the activities that are necessary to set a component into
the state that is required by a user site are specified. Examples for activities are
the steps that must be performed to install a software library or the instructions
to set up a particular hardware device.

4. Execute
In this step, the previously defined activities are executed in the order imposed
by the dependencies that were modeled in step 2.

5. Start
In the final step of the deployment process, the system is set into operation at
the user site.

Since the TCS/MAS system was designed as a prototype that was only to
be run at the development site to obtain simulation data there was no need
for extensive deployment planning.

The only relevant aspects of the system deployment is to ensure the in-
stallation of the correct versions of Oz [Programming Systems Lab, 1999]
and LEDA [Mehlhorn and Näher, 1999]. For development versions of the
TCS/MAS system, Emacs [Stallman and Free Software Foundation, 1999]
must be installed as well.

5.9 Summary

In this chapter, I have presented views as the core concept of the Massive

development method. Views allow the system designer to break down the tar-
get system into several projections that concentrate on particular aspects of
the system and abstract away from others. The seven views of the Massive

method and some of their content are summarized in Figure 5.44. The En-
vironment view characterizes the environment of the target system from the
developers and the systems perspectives. The Task view focuses on what the
system should do in terms of functional and nonfunctional requirements and
basic problem solving capabilities without thinking in agent-oriented terms.

204 5. Massive Views

Delimi-
nation

Assign-
ment

Dimen-
sions

Agent
Archi-
tecture

System
Archi-
tecture

System
View

Deploy-
ment

Handling
Exception Perf.

Eng.

Role
View

ViewView
Society

Structures

Archi-

View
tectural

Interaction

GUI

View

Protocol
Design

Generic
Interaction
Structures

Environment
View

Task

Perspective
Developer

Pers-
pective

System Func-
tional Non-

func-
tional Basic

Cap.

Fig. 5.44. The Mas-

sive View System

The Role view concentrates on a functional and physical grouping of the prob-
lem domain and is used to assemble a set of coherent roles for the agents.
It also deals with the assignment of these roles to particular agents. The In-
teraction View describes the ongoing interactions between agents in terms of
interaction protocols and provides a set of generic interaction schemes that
can be used by the system developer. The Society view defines the social
dimensions of the target system and describes the structure of the agent so-
ciety. The Architecture view turns the features that have been modeled in
the other views into the software design of the system and the agent architec-
ture. The System view, finally, captures all aspects that cannot be assigned
to a single view such as the user interface, the global error handling scheme,
performance engineering aspects or system deployment.

This product model for multiagent systems represents the current expe-
rience with the development of multiagent system. It is meant as an initial
model that should be refined and extended in the sense of the institutional
framework of an Experience Factory.

The TCS/MAS system was used as a case study throughout this chapter.
In order to show the validity of the Massive method in different application
areas, I will describe in the next chapter how it was successfully applied in
two other problem domains.

6. Further Case Studies

A development method will never be accepted in an industrial context if it
cannot prove its validity in practice. The Massive method is not a method
that was developed in the laboratory and then transfered to actual projects.
Rather it is derived from projects that were successfully carried out at the
DFKI and elsewhere and that were analyzed after completion in order to
find similarities in the product and process models. The advantage of this
approach is that it provides further case studies that show how the method
works and that demonstrate that the method can be used for a broad range
of multiagent applications.

6.1 The Teamwork Library

The Teamwork Library [Lind, 1996a], [Denzinger and Lind, 1996] is a
framework for the development of distributed search applications according to
the Teamwork approach [Avenhaus and Denzinger, 1993], [Denzinger, 1993].
In the following sections, I will present the general idea of the teamwork
approach and the design of a library that supports the user in developing
teamwork-based applications.

6.1.1 Environment View

Since the Teamwork Library is intended as a generic framework for dis-
tributed search application in various contexts, it is not possible to describe
the environment from the perspective of the agents because this view de-
pends on the particular problem domain. Therefore, we are limited to the
developers perspective in the description of then Environment view of the
Teamwork Library.

This perspective is dominated by the characteristics of the runtime en-
vironment which in turn is determined by the intended initial use of the
library in the context of a Solaris environment. Due to efficiency aspects, the
goal language was chosen to be C++ [Stroustrup, 1987] and the program-
ming model should be parallel because a pseudo-parallel approach would not
adequately exploit the benefits of the teamwork approach. Finally, the com-
munication platform provided by Solaris is TCS/IP. Especially this aspect

J. Lind: The MASSIVE Method, LNAI 1994, pp. 205-241, 2001.
 Springer-Verlag Berlin Heidelberg 2001

206 6. Further Case Studies

has some major impact on the overall structure of the Teamwork Library

and will be discussed in Section 6.1.4 in greater detail.

6.1.2 Task View

In this section, I present the key ideas of the teamwork approach as they were
introduced in [Denzinger, 1993] in the context of equational theorem proving
and later extended and generalized in [Denzinger and Lind, 1996].

The teamwork approach is a distributed problem solving algorithm for
problems with very large (or infinite) search spaces. Due to the size of the
problems of interest, it is impossible to traverse the entire search space, and
in some cases (e. g. optimization problems), a rather good, although not the
best, solution is usually sufficient. Since there is a large number of possibil-
ities to proceed with the search it is very important to design heuristics or
knowledge based algorithms to concentrate on search paths which will lead
to the goal quickly.

We can identify two groups of algorithms that have their main difference
in the information they need to continue the search process. The first group
are search processes that need explicit information about prior search states,
i. e. they need to know the history of the search. The processes of the second
group do not need any history information to proceed with their search.

The first group of search processes are called divide and conquer algo-
rithms and they normally use trees or directed graphs to represent their
states. Examples for search processes of this group are the well known Branch
and Bound algorithms [Lawler and Woods, 1966]. The way they execute their
search is quite straightforward: the problem is divided into several subtasks
which are worked on independently, i.e. without any communication between
the tasks. The results of the subtasks are assembled at the next higher level
and, since the search may lead to dead ends, backtracking is sometimes nec-
essary.

The main problem for this group of search processes is to design good
heuristics to identify the subtasks into which the main task will be divided.
Load balancing between the physical agents to which the subtasks are as-
signed and identifying subtasks that can actually be solved by a single agent
are key issues for the design of an application that uses these search processes.

In the second group, we have algorithms that perform a search by exten-
sion and focus. In this group of search processes, the search space is repre-
sented by a set of results which is normally unstructured. The search processes
do not keep explicit information on how a search state was reached, i. e. no
information about the decisions which lead to a particular state are kept. To
determine the transitions from one search state to another, the search pro-
cesses use a set of extension rules. Due to the problem size, there are usually
a very large number of possible extensions and this is why a focus function
is needed to limit this number. A characteristic property of problems that

6.1 The Teamwork Library 207

can be solved with algorithms of this group is that it is normally not possi-
ble to find “natural” partitions of the search space. This is the reason why
the teamwork approach was developed for this class of search processes since
divide and conquer algorithms are not suitable for these kinds of problems.

The distinction of problems into two classes is not very sharp: There
are problems that may be solved by using algorithms from either group, for
example to prove the unsatisfiability of a formula of first order predicate
logic. This problem can be solved with a semantic tableau [Smullyan, 1968]
which belongs to the first group, or by using resolution and factorization
[Robinson, 1965] which belongs to the second group. The distinction is, how-
ever, precise enough to characterize the problems for which the teamwork
approach can be used.

In order to formalize the concepts that have been introduced so far, we
have the following definitions.

Definition 6.1.1 (Search by extension and focus). Search by extension
and focus is described by a 4-tuple (B, Ω, I,S′). Here B is a set of objects
and the subsets S ∈ 2B of B are called states. Ω is a predicate defined on B
and I consists of extension rules of the form L ∪ M → L ∪ N with L,M,N ∈
2B. S0 ∈ 2B is called the start state and for all s ∈ S0 we require that Ω(s)
holds. We write S �I S’ for states S and S’, if there is a rule L ∪ M → L
∪ N in I such that S = S” ∪ L ∪ M and S’ = S” ∪ L ∪ N and Ω(s) holds
for all s ∈ S’. A sequence (S0,S1,...,Sn) with Si−1 �I Si for all i=1, . . . ,n
is called a search derivation. We shall call the Si derivable from S0.

B and I are determined by the (general) problem to be solved and I is
(since it may contain infinitely many elements) usually represented by a finite
set of rule schemata. Note that Ω and S0 are determined by the instance of
a problem, i. e. the input of the search process.

Definition 6.1.2 (Goal of a search by extension and focus). Let
(B, Ω, I,S′) be a search by extension and focus. Let >B be a Noetherian par-
tial ordering on B. Then we call an element g ∈ B having property Ω that
is minimal with respect to >B a goal of the search. A state containing g is
called a goal state. The goal is reachable, if there is a goal state Si derivable
from S0 by rules from I.

The definitions given above are not sufficient to completely define a search
process because some indeterminism remain unresolved. It is, for example,
possible that the goal cannot be reached for a given input or there may be
several states containing the goal. These problems are solved by providing a
function to select the “best” extension for a given search state. This function
is called the focus of the search process.

Definition 6.1.3 (Focus function). Let (B, Ω, I,S′) be a search by exten-
sion and focus and g a goal. A function f:2B × I → Z is called a focus

208 6. Further Case Studies

function and the derivation (S0,S1, . . . ,Si, . . .) is produced by f, if for the
extension Li ∪ Mi → Li ∪ Ni that produced state Si, i > 0, we have that
f(Si−1,Li ∪ Mi → Li ∪ Ni) ≤ f(Si−1,L ∪ M → L ∪ N) for all L ∪ M → L
∪ N ∈ I.

The nonfunctional requirements of the Teamwork Library are as fol-
lows. First of all, the library should be easy to use even for inexperienced
users. Thus, the library should provide the necessary structures for a broad
range of applications that can be used with little adaptations by the appli-
cation developer. Second, the library should be flexible and generic in a way
that it supports different application classes on a high level of abstraction
and provide the mechanisms to instantiate the generic base structures for a
concrete problem. Finally, the library should be efficient in that is has only
little administrative overhead and efficient algorithms for aspects such as data
transfer etc.

6.1.3 Role View

The general idea of the teamwork approach is to work with different algo-
rithms on the same problem and to incorporate the specific benefits of each
algorithm into an overall solution that is better than any of the separate
solutions alone. This will not work in all cases, but experience shows, that it
can – and in most cases will – lead to better results than a single algorithm
alone [Pitz, 1993].

The original teamwork approach as presented in [Denzinger, 1993] was
inspired by modeling a human project team on a computer network. In bigger
companies, it is quite common to have project teams working on a specific
problem by using the knowledge and experience of several experts. There is
a large number of different ways to organize project teams and the teamwork
approach is just one way how to organize it, but since it is not possible
and not ingenious to try and cover all possibilities, some assumptions are
made to concentrate on one possible realization. In the teamwork view, the
composition of a team (i. e. the team members) can be adjusted to a given
problem and the composition can change during the problem solving process.
The control of the whole process lies within a (team-)supervisor on top of
the team hierarchy. It is, however, possible to delegate complete (sub-)tasks
to a sub-team, but the main responsibility for the problem solving process
stays with the supervisor of the main team. The teamwork approach tries to
reflect such a human project team that consists of four types of components:
experts, specialists, referees and a supervisor.

The teamwork approach distinguishes two phases of the problem solv-
ing process. During the working phase, the problem solving entities generate
search states according to their individual specifications. Each of these work-
ing phases is followed by a team meeting during which the more administrative
aspects of the problem solving process are dealt with.

6.1 The Teamwork Library 209

Experts and Specialists are the only components of a team which work on
the problem directly. Each of the different experts must be capable to solve
the problem alone, but, because of the different algorithms and heuristics
used in the experts, each of the experts has another view on the problem.
A very important need for an expert is that it must be able to continue the
work started by another expert. This implies, that in contrast to specialists
as we will see later, all experts in a team must have the same knowledge
representation. Another restriction for the implementation of an expert is
the size (the duration) of an atomic step in its computation. This size must
not be too large because an expert must be able to stop its computation in a
stable state at almost any time to join a team meeting. It is not acceptable
for other experts to waste time on waiting for experts to be ready for a team
meeting.

Specialist differ from experts mainly in two ways: they may have their own
data representation and they may keep knowledge for a longer time (especially
for more than one team meeting). This will be explained later when team
meetings are discussed. An important requirement for specialists is that they
must be able to convert their results (represented in their special knowledge
representation) into a format that can be understood by the experts.

The referees mentioned above have two major tasks: assessing the work
of an expert or a specialist to judge the progress made and choosing “good”
results computed by an expert/specialist. The main difference among the ref-
erees is their assessment strategy, which, in most cases, are statistical criteria.
The assignment of referees to the experts/specialists they assess is not fixed
during the entire application. Instead, it is possible that an expert/specialist
is assessed by different referees during a system run. This reflects the fact that
the problem description evolves during the solution process and that the as-
sessment criteria for what is regarded as a “good” result or a “big” progress
may change. Note that a special knowledge representation of the specialists
requires special referees to assess the specialists work and to choose the good
results. The reports generated by the referees are used to determine the next
team supervisor and the results chosen to be good offer the possibility to
forget unimportant facts which did not contribute to the solution process.
This forgetting of facts is very important in order to avoid blowing up the
search space.

The supervisor of a team, finally, has the central control over the team
activities. Its main tasks are: to build a new, improved problem description
before the next working phase starts, to choose the experts to work in the
next working phase, and to determine the duration of the next working phase.

These roles (supervisor, expert, specialist and referee) constitute the func-
tional grouping of the teamwork library. The physical grouping of these roles
is determined by the complexity of the problem solving capabilities of the
agents. In the first application of the teamwork approach [Pitz, 1993], each
agent was a full fleshed theorem prover that needed the computational re-

210 6. Further Case Studies

sources comparable to those of a Unix process. The teamwork approach
was originally designed for coarse-grained problems that are worked on by
resource-intensive inference mechanisms and this fact is reflected in the phys-
ical grouping of the agents as well. Thus, as in the very first Teamwork ap-
plication, we assume that each agent is equipped by the amount of resources
mentioned before.

The functional and the physical groupings that were discussed previously
map together very well making it easy to define each role according to the
functional grouping because the physical grouping is well capable of satisfying
the resource requirements of the functional grouping.

Now that the roles within the Teamwork Library have been defined,
the next step is to specify the interactions that take place between these roles.

6.1.4 Interaction View

The overall control flow of a teamwork application consists of repeated loops
of working phases until either a solution is found or the search process is
aborted. At the end of each working phase, a team meeting is held to bring
together the results of the experts and specialized that have worked on the
problem for some time, to evaluate and combine their respective results and
to select the next team supervisor and the participants of the next work cycle.

Figure 6.1 shows the information and control flow during a team meet-
ing. During a working phase, the team supervisor acts as a normal expert,
its special task starts with the beginning of the meeting. First of all, the
supervisor must determine the best expert which will later become the next
supervisor. Therefore, the referees start to evaluate the results that were ob-
tained by the experts and specialist during the last working phase (➀) and
the current supervisor uses short reports (➁) (usually containing only a sin-
gle assessment value) of the referees to select its successor. Control is then
instantly passed to the new supervisor (➂) that takes over the lead of the
team meeting started by the old supervisor.

First, the new supervisor requests the detailed reports from the refer-
ees (➃). Each report contains the good results and several statistical data,
generated on the performance evaluation of the experts or specialists. After
receiving all data, the supervisor starts to integrate the results of the experts
and specialists into its problem description. Note that this is the problem
description of the best expert during the last working phase and thus ideally
contains a problem description that is more likely to contain the solution then
the descriptions of any other agent. Then, the statistical data of the reports
is used to choose the team members for the next working phase by replacing
unsuccessful experts by others which are expected to provide better results.
This selection of experts and specialists enables the supervisor to adapt the
team configuration to the given problem.

In the final step of the team meeting, the supervisor determines the dura-
tion of the next working phase and transfers all necessary knowledge (problem

6.1 The Teamwork Library 211

1

2

3
4

5

Specialist mExpert n.Specialist 1

Supervisor

Supervisor

Specialist mExpert 1 Expert n.Specialist 1

assessement

short reports

full reports

Expert 1

Referee 1 Referee n Referee n+m

pass control

new problem description

Referee n+1

Fig. 6.1. Team Meeting

description, team structure and duration of the next working phase) to the
experts (➄). After the transfer is complete, the next working phase starts.

The transfer of the new problem description can easily become a perfor-
mance bottleneck as it is usually very large. Using standard transfer protocols
such as TCP/IP can severely limit the performance of the system when the
number of participating agents in a team exceeds a certain threshold because
TCP/IP allows only for the sequential transfer of data to several recipients.
Clearly, this is not acceptable and so means must be found to speed up
the data transfer between the supervisor and the agents at the end of a team
meeting. To overcome the performance bottleneck, the Teamwork Library

implements a broadcast mechanics on the basis of IP datagrams. The pur-
pose of the broadcast protocol is to provide a transparent, convenient and
easy interface to the use of broadcasts. The approach for the use of broadcasts
should be the same as for the stream sockets.

During protocol execution, one agent has an outstanding position called
the actual sender. The actual sender is the only agent that is allowed to send
broadcast messages at a certain time, but of course the sender can change
over time.

The data transmission from the sender to the receivers is symmetric, i.e.
each send operation for a specific amount of data corresponds to a receive
operation for exactly the same amount. Furthermore, the data transfer be-

212 6. Further Case Studies

tween two agents using broadcasts is done in a buffered manner, i.e. a call to
a send/receive operation may block the agent either because the data buffer
is full and has to be flushed or it is empty and the new contents must be
read.

During the protocol execution, the most important tasks for the agents are
order preservation and loss detection of the packets sent. Broadcasts messages
are unreliable datagrams and are therefore susceptible to duplication, order
confusion or even loss. To illustrate how the Teamwork Library handles
these problems, we will now discuss how the protocol works in detail.

Figure 6.2 illustrates how the transfer of a particular amount of data
is organized in a broadcast session that is in turn subdivided in several
sub-sessions that themselves consist of a transmission and a acknowledg-
ment/retransmission phase.

The first thing to do for the current sender is to check whether all receivers
are ready by waiting for a confirmation message from each receiver. After all
receivers have confirmed to be ready, the data transfer can begin. The sender
knows how many bytes have to be sent and from that value it can calculate
the total number of packets needed to flush the entire buffer. This number is
used to estimate the best number of packets to be sent before requesting an
acknowledgment. The estimation will lie between a fixed lower bound and the
total number of packets needed and it denotes the size of the next sub-session.
The estimation algorithm is based upon prior data about packet duplication
or packet losses and thus implements an adaptive protocol.

After selecting the best size for the next sub-session, the sender starts to
transfer the proposed number of broadcast datagrams where each of these
datagrams has a header and a data field. The header field contains the sub-
section and a packet number and an optional operation code to trigger certain
actions on the receivers side. The two numbers in the header make it possible
to identify every broadcast message during an entire Teamwork application
uniquely. The receivers read the datagram messages and the header fields tell
them what to do with an incoming packet.

The last packet of every sub-session contains the header opcode SendAckn
(or, if it is the last packet of the session, the opcode EndOfTransmission –
which implies a SendAckn) that tells the receivers to enter the acknowledg-
ment phase. This packet is protected against loss by the use of a timer, i.e.
when the sender realizes that acknowledgments are missing after a certain
period of time, it will assume that at least one receiver did not get the packet
containing the acknowledgment request. The last packet is then repeated un-
til all receivers have sent their acknowledgment or until a maximum number
of retransmissions was performed. In the latter case, the protocol issues an
error message and abort because it assumes some irreparable damage at one
of the receivers.

The acknowledgment scheme that is used in the Teamwork Library

is called a negative acknowledgment scheme which means that the receivers

6.1 The Teamwork Library 213

...

...

...

...

Packet type

Data field

Packet types:

Opcodes:

Opcode
Session no.

Packet no.

NOP: No operation

session 0

session 1

time

0

0

0

0

0

0

0

n

n+m

k0

kn

1 0

dgram

dgram

user data

user data

PtP RD

ACKN
missing = {k0,...,kn}

PtP
user data

PtP
user data

dgram

dgram

n+1
user data

user data

PtP

PtP RD

ACKN
missing = {}

dgram
user data

PtP

Sender Receiver

EOT

SA

NOP

NOP

NOP

NOP

NOP

dgram: broadcast datagram
PtP: point-to-point packet

RD: ready to receive
SA: SendAckn
EOT: EndOfTransmission
ACKN: acknowlegement

Fig. 6.2. Broadcast Protocol

214 6. Further Case Studies

. . .

. . .

. . .

. . .Referee 1

Expert n

Referee n

Specialist 1 Specialist m

Supervisor

Expert 1

Referee n+mReferee n+1

Fig. 6.3. Team Structure

keep track of the packets that were received and that the receivers inform
the sender in their acknowledgment message which packets they did not re-
ceive. In a positive acknowledgment scheme, on the other hand, the receivers
report which packets they got and the sender decides which packets must be
retransmitted. After all the missing packets have been sent to the receivers,
a new sub-session begins or the transmission loop ends because the entire
buffer was transferred.

6.1.5 Society View

The structure of the agent society within a typical Teamwork application is
shown in Figure 6.3. The overall structure is hierarchical with the supervisor
being the head that controls the subordinate agents. Each of the task specific
agents on the lowest level (experts or specialists) has an associated referee
that evaluates its work in each team meeting and that is responsible for
selecting good results to be forwarded to the supervisor.

In [Kronenburg, 1995], an extension of the basic teamwork approach is
presented that focuses on hierarchical team structures. A team tree can be
built by allowing a team to have one or more sub-teams (which can have sub-
teams as well). These sub-teams can be regarded as extended specialists as
they can be used to solve subproblems of the main problem which are too hard
for a single expert or specialist. Another field of application for sub-teams
is a more administrative one. Sub-teams can be used to eliminate redundant
information in order to reduce the memory usage of a teamwork application.
Since the teamwork approach was designed for large search spaces, such a
“garbage collection” is often needed to make a problem solution possible.

The sub-team extension, however, is not yet implemented in the teamwork
library, but some effort has been taken during the design phase of the library
to make the later integration of the sub-team extension as easy as possible.

6.1.6 Architecture View

System Architecture. In this section, I will characterize the required sys-
tem architecture according to the scheme given in Section 5.7.

6.1 The Teamwork Library 215

Entities The only entities that occur in the Teamwork Library are the
agents that play the different roles according to the teamwork paradigm.

Control flow The control flow is fully determined by the Interaction view.
Information flow dto.
Agent management The agent management uses a proprietary mechanism

that is executed by the initial team supervisor. Upon start, the initial
agent becomes the supervisor and reads a team configuration file. Then,
the supervisor launches an ID server that can be accessed by any subse-
quent supervisor in order to obtain unused unique identification numbers.
Next, the supervisor starts new agents on the specified host computers
for each teamwork agent. The newly created agents immediately connect
to the supervisor and establish the communication network to the other
agents.

Communication model The communication model of the Teamwork Li-

brary is based on proprietary TCP/IP messages that thus do not use
any standard agent communication language.

Agent architecture The architecture of the Teamwork agents is discussed
below.

Database design The Teamwork Library itself does not need any cen-
tral databases, applications specific databases are not subject to this
view.

External components/devices No external components or devices are
used in the Teamwork Library.

Agent Architecture.

Reasoning capabilities The reasoning capabilities of individual agents
must remain unspecified because they are domain specific.

Resources limitations Each teamwork agent should be equipped with the
computational resources of a Unix process in order to enable it solve
demanding tasks in the problem domain.

Control flow The control flow within a teamwork agent is sequential be-
cause the role activations follow the ordering defined by the teem meeting
protocol from Section 6.1.4.

Knowledge handling The knowledge representation of the agents depends
on task-specific aspects that cannot be covered by a generic framework
such as the Teamwork Library.

Autonomy The basic idea of the teamwork approach aims at distributed
search in a large search space following a rather strict computational
model that does not support agent autonomy in any way.

User interaction No user interaction is intended for the agent since the
teamwork approach is a batch-oriented search scheme.

Temporal context The lifetime of the teamwork agents will typically range
only over a few hours and will thus not require any persistence mecha-
nisms. However, if persistence is required in a particular application, the
necessary mechanisms must be provided by the library user.

216 6. Further Case Studies

...

CEP CEP

Communication Interface

synchronous
Eventhandler

asynchronous
Eventhandler

Broadcast
Buffer

Broadcastaccept

CEPCEP CEPCEP

CEPSet

Knowledge Base

Scheduler
Process

RefereeSpecialistXpertSupervisor

Supervisor SpecialistXpert

Fig. 6.4. Teamwork Agent Ar-
chitecture

Rationality This aspect of the agent architecture is application specific and
therefore not covered by the generic agent architecture.

The agent architecture of the Teamwork Library as shown in Figure
6.4 consists of three major parts: The communication interface of the agent
architecture provides several mechanisms at different levels of abstraction to
communicate with other agents of the application. AT the lowest level, nor-
mal TCP/IP stream connections are provided. The communication interface
implements the standard connection establishing process by offering an ac-
cept communication end point (CEP) to which the other agents can connect.
A new CEP is then created to handle the messages that are exchanged via
the new connection. At a higher level of abstraction, these low level facilities
are used to implement more complex forms of message exchange. One of these
forms is the broadcast protocol based on IP datagrams that was presented
earlier in this section, the two others are synchronous and asynchronous event
mechanisms. A synchronous event mechanism assumes that the event sub-
scriber expects an incoming event and dispatches this event according to a
pre-defined handler. Asynchronous events differ from this by interrupting the
subscribes control flow, dispatching the event and then resuming the control
flow from the point where it was interrupted.

The process scheduler that is implemented in the teamwork agents ac-
tivates a particular role during the working phase according to the team

6.1 The Teamwork Library 217

structure that is provided by the current team supervisor. It is also respon-
sible for switching between the roles of the working phase and those of the
assessment phase and must thus know which expert or specialist is assessed
by which referee.

The knowledge base, finally, contains the domain knowledge that the
agents use during the working phases and the specific knowledge of the su-
pervisor that is needed during the team meeting. The referee roles can access
the expert or the specialist part of the knowledge base in order to compute
the short report and to select the good results for the long report.

6.1.7 System View

User Interface. Due to the generic nature of the Teamwork Library,
the user interface that is provided together with the library must be limited
to task-independent aspects of the final application. Thus, I have included a
number of external tools that allow the developer and the user to monitor
and analyze the system activities of a typical teamwork application. The tools
that are provided with the Teamwork Library are as follows.

The Agent Monitor shows the current state of each agent and the incom-
ing and outgoing messages according to the Teamwork protocol described
in Section 6.1.4. The second tool that is provided by the Teamwork Li-

brary is the Society Monitor that is used to visualize the current collection
of agents that constitute a Teamwork application. The agent as well as the
society monitor that were provided with the first version of Teamwork Li-

brary were strictly text based and have been extended in subsequent work
[Künzel, 1997]. The extension also includes several tools to manipulate the
behavior of individual agents or the agent society and a collection of generic
base methods to support the development of a task-specific user interface.

A graphical tool that was provided with the original release of the Team-
work Library is the Broadcast Analyzer shown in Figure 6.5. This tools allows
the system developer to perform a post-mortem analysis of the broadcast
traffic during a teamwork application. The collected information can then be
used to optimize the parameter setting for the broadcast protocol that was
presented in Section 6.1.4.

Performance Engineering. Performance Engineering of the Teamwork

Library was mainly focused on the communication subsystem of the agent
architecture. To illustrate the performance engineering process, I will now
present the estimation algorithm for the size of the next sub-session during
a broadcast session. This estimation algorithm uses statistical data that is
collected in earlier sub-sessions to estimate the next value.

• The average packet loss al during the last loss history (lh) sub-sessions is
the weighted arithmetic mean of the packet losses of these sub-sessions. A
weighted mean is used because the losses recorded in earlier sub-sessions

218 6. Further Case Studies

Fig. 6.5. Broadcast Statistic Tool

should be taken less into account then more recent data. The weighted
average mean is computed according to the following formula.

al =

∑n−1
i=n−lh

(
(1
2)

n−i−1 · ∑r
j=0(lossj(i))

)

∑lh−1
k=0 (

1
2)

k
(6.1)

In equation 6.1, n denotes the number of the current sub-session, r holds
the number of receivers and the function lossj(i) returns the number of
packets lost by receiver j in sub-session i. Please note, that the sum is not
evaluated if i is less then 0 and note also that if the divisor of equation 6.1
is 0, al is assigned a default value (averageLossDefault(.

• The absolute number rl of lost packets containing opcode SendAckn or
EndOfTransmission during the last acknowledge Request loss history arlh
sub-sessions. This value is critical for broadcast performance because every
lost acknowledgment request packet implies a delay (to detect that it was
lost) and a retransmission. Therefore, special activities should be taken if
this value exceeds a certain bound. The absolute number is computed to

rl =
n−1∑

i=n−arlh

r∑
j=0

acknReqLossj(i) (6.2)

Again, n holds the number of the current subsection, acknReqLossj(i)
returns the number of packets lost by receiver j in sub-session i. As in
equation 6.1, the sum is not evaluated if i is less then 0.

• The average size s of the last average sub-session size history asssh sub-
sessions. Again, we use a weighted arithmetic mean to reduce the influence
of older data.

6.2 Personal Travel Assistant: Intermodal Route Planning 219

s =
∑n−1

i=n−asssh

(
(1
2)

n−i−1 · sss(i))
∑asssh−1

0 (1
2)

k
(6.3)

In equation 6.3, sss(i) returns the size of sub-session i. If i does not denote
a valid sub-session number (e. g. if n − asssh < 0), the return value is
ignored in the computation.

Now I will demonstrate how these values are used to determine the major
parameter of the broadcast buffer during the sending phase. The size of the
next sub-session is chosen according to

nextSSS =

lastSSS + increaseUnitSize al ≤ littleLoss
s littleLoss < al

≤ mediumLoss
s − al mediumLoss < al

≤ highLoss
s − al − decreaseUnitSize al ≥ highLoss

(6.4)

Another parameter that determines the senders behavior is the send delay.
If a send delay is activated, the last packet of every sub-session which contains
the acknowledgment request is sent twice, with a delay of a few microseconds
between the two send operations. This helps to reduce the number of ac-
knowledge request losses because the delay enables the receivers to process
some datagrams received earlier thus freeing internal buffer space for more
incoming packets. The delay option is turned on if the number of acknowledge
request packets lost exceeds the value of absAcknReqLossBound.

This was only one example of the Performance Engineering activities that
have been applied to the Teamwork Library. Further – and more detailed
– information about performance aspects of individual parts of the library
can be found in [Lind, 1996b].

Deployment. Deployment planning was a major concern of theTeamwork

Library as it was intended to be usable on a broad variety of hardware
platforms that support the basic requirements that were outlined in Section
6.1.1. Therefore, the final release of the Library contained a generic Makefile
that was configured by the library user to fit the particular needs of an
installation site. The details of the deployment process are beyond the scope
of this overview, the interested reader may refer to the reference manual that
is shipped with the library [Lind, 1996b].

6.2 Personal Travel Assistant: Intermodal Route
Planning

The Personal Travel Assistant (PTA) [FIPA, 1997] is a scenario described
by the FIPA Standardization Organization to evaluate various aspects of the

220 6. Further Case Studies

standard. The FIPA Organization is an international consortium of about
50 industrial and academic institutions whose goal is to define standards for
communication among agents to ensure interoperability in industrial appli-
cations.

The agents in the PTA domain operate on behalf of their users and pro-
vide assistance in the pre-trip planning phase as well as during the on-trip
execution phase. In order to accomplish this assistance, the PTA interacts
with the user and with other agents that represent the available travel ser-
vices. Besides the core competences such as configuration and delivery of
trip planning and guidance services, the PTA also provides added-value ser-
vices according to personal profiles, e.g. interests in sports, theater, or other
attractions and events.

The focus of the services provided by the PTA, however, is on the basic
requirements of the trip which is first of all to find the best combination of
travel services that take the PTA user from his or her desired starting point
to the destination. This route planning service is provided by a special agent,
the Intermodal Route Planner (IMRP). The IMRP is responsible for selecting
a group of transport carriers that provide the necessary services at the quality
required by the user. Figure 6.6 illustrates the basic idea in combining the
services of several transportation carriers such as car and plane into a single
route plan. Each of the different transportation services is encapsulated by
an agent that provides a planning interface to the service. In the example in
Figure 6.6, the user agent will query the autoroute planner for the best way
from the users starting point to the airport and the air plane agent for a flight
to the destination. Obviously, these two plans are not independent of each
other as the flight can only be taken after the trip to the airport is complete.
Additionally, the person who is traveling will not want to waste too much
time because of an early arrival at the airport. Hence, it is the task of the
PTA to find partial plans that satisfy the users constraints and to integrate
these plans in order to guarantee a smooth trip.

In the following sections, I will describe a solution for the intermodal
route planning process that was developed in the MoTiV-PTA project
[Bayrische Landesregierung, 1996]. Due to the limited space, however, I will
only be able to provide the basic ideas of the design that was used to imple-
ment the final system.

6.2.1 Environment View

The environment view of the agents within the IMRP domain is determined
by the standards that are set by the FIPA. The FIPA97 [FIPA, 1997] specifi-
cation provides technical standards for Agent Management (administration of
agent systems, yellow page services, firewall technology etc.), Agent Commu-
nication Language (FIPA ACL based on speech-act theory, protocol specifica-
tion etc.) and Agent Software Integration (integration of existing SW systems
in agent systems (agent wrappers) etc.). This set of standards is extended in

6.2 Personal Travel Assistant: Intermodal Route Planning 221

Autoroute
Planer

Intermodal
Route

Flight
Planer

Fig. 6.6. IMRP Exam-
ple

the FIPA98 [FIPA, 1998] specification by defining standards for Agent Man-
agement Support for Mobility (specification, configuration and handling of
mobile agents), Agent Security Management (secure communication support,
agent authentification, trusted platform specification), Ontology Service Sup-
port (support for the specification of the semantics of domain-specific message
contents) and Human/Agent Interaction (interface specification, user profil-
ing, learning about preferences).

Since the PTA domain was created to evaluate the FIPA specifications,
it is clear that the resulting application must conform to the standards de-
scribed in [FIPA, 1997] and [FIPA, 1998].

The FIPA standard requires a minimal framework that provides prim-
itive services for the agent inter-operation based on the following entities.
The Agent Management Service (AMS) provides the services for the man-
agement and administration of agents e.g. by offering a name service, the
Directory Facilitator (DF) agent contains yellow pages with service descrip-
tions and services and several Agent Communication Channels (ACCs) exist
for platform-independent communication, secure communication and com-
munication through firewalls. This minimal framework is implemented by
the MECCA agent platform [Gerber et al., 1999b] that was used in the
IMRP project. The general development environment for the target sys-
tem is based on three platforms (Solaris, Linux and NT) and uses Java
[Sun Microsystems, 1999] as the implementation language. The programming
model is parallel because the individual route planer agents are supposed to
be physically distributed and the agents will use network communication
services to exchange messages.

222 6. Further Case Studies

6.2.2 Task View

The Task view describes the task decomposition within the target system
and defines the basic concepts that were used to model the problem domain.
In the IMRP domain, the overall problem to be solved is to find a trip from
a given start point to the destination while preserving additional constraints
such as available time windows or preferred transportation means. Before we
proceed to the task decomposition of the target sysetem. however, we will
first develop a formalization of the IMRP domain in order to obtain a tool
for writing precise requirement specifications and solution outlines.

First of all, we define the basic data structures that occur in the problem
domain and that must be represented within the target system. The most
important data structure for the formalization of the IMRP domain is used
to represent the individual travel services. Each of these services operates
on a graph structure in which the nodes represent the service access points
and the weights of the links represent some abstract cost measure that is
associates with traveling a particular link.

Definition 6.2.1 (Graph).
A Graph G = (V, L, α, ω, γ) consists of a set V of vertices, a set L of

links, a mapping α : L → V, α(l) = v where v ∈ V and v is a starting node
of l, a mapping ω : L→ V, ω(l) = v where v ∈ V and v is a terminal node of
l and a weight function γ : L→ RI that assigns a weight to each link.

l is a link between two vertices v1 and v2 iff α(l) = v1 ∧ ω(l) = v2.
The weight of the link is γ(l). In the context of multiple graphs, let VG and
LG denote the set of vertices and links for a graph G, respectively. In the
following, we will use the terms vertice and node synonymously.

Another data structure that is often used in the formalization is a list
over a particular set of ground elements. The following definitions describe
the basic operations that can be performed on such lists.

Definition 6.2.2 (List, List Operations). Let L = [e1, . . . , en] be a List
of elements over a set E, i.e. ei ∈ E ∀i ∈ {1, . . . , n}. We write L = [H |T]
with

• H = e1
• T = e2, . . . , en

Let LISTS(E) be the set of all sets over E. The following operations are
defined on LISTS(E):

• length : LISTS(E)→ NI where length([e1, . . . , en]) = n returns the length
of a list.

• head : LISTS(E)→ E where head([H |T]) = H returns the head element
of a list.

• tail : LISTS(E) → LISTS(E) where tail([H |T]) = [T] returns the tail
element of a list.

6.2 Personal Travel Assistant: Intermodal Route Planning 223

Furthermore, we define

• heads : LISTS(LISTS(E))→ LISTS(E) where
heads([[H1|T1], . . . , [Hn|Tn]]) = [H1, . . . , Hn]

• tails : LISTS(LISTS(E))→ LISTS(LISTS(E)) where
tails([[H1|T1], . . . , [Hn|Tn]]) = [[T1], . . . , [Tn]]

After these basic data structure definitions, we can now turn to the actual
formalization of the concepts of the IMRP domain. First of all, we formalize
the services that are restricted to individual travel services.

Definition 6.2.3 (Unimodal Map).
A unimodal map is a graph G according to definition 6.2.1, UMAPS

is the set of all unimodal maps.
We define a predicate valid : UMAPS → {true, false} on the set of

unimodal maps that decides the validity of a map in a given context.

The validity of a route is a personalized function that can be used to
express user preferences with respect to a particular travel service. We will
not define this function as it is only an interface to higher level functionality
of the PTA that is not of interest in the IMRP domain. Next, we define how a
particular route is represented such that it can be uniquely identified within
a intermodal route.

Definition 6.2.4 (Unimodal Route).
A sequence R = (v1, . . . , vn) is a unimodal route in a map M iff

• vi ∈ VM ∀i ∈ {1, . . . , n} and
• vi �= vj ∀i, j ∈ {1, . . . , n} : i �= j and
• ∃l ∈ LM : α(l) = vi∧ ∈ ω(l) = vi+1 ∀i ∈ {1, . . . , n− 1}

We call a tuple ((vs, . . . , vd), G) with G =
∑

l∈L(vs,...,vd) γ(l) a weighted
(unimodal) route and U = (M,R,G) a named weighted (unimodal)
route in M .

Furthermore let Routes(M) denote the Set of all Routes in M and the set
of all links of a particular route is Links : Routes(M)→ Ln

M with

Links(R) = {l|l ∈ LM ∧ ∃v ∈ VM : (α(l) = v ∨ ω(l) = v)}
Γ : Routes(M)→ RI is defined as

Γ (R) =
{
MAXWEIGHT if vs = vd or R = ()
G otherwise

Note that we have defined the weight of a route to be MAXWEIGHT
in the case that the start and the goal node are the same. This trick allows
us to simplify the algorithms given below as it automatically rules out empty
routes in an intermodal route without an extra check simply because of the

224 6. Further Case Studies

high costs that are associated with any intermodal route that contains empty
unimodal routes.

Now that the individual travel services have been formalized, we must
define how the PTA user can switch from one travel modality to another.
Thus, we must define how we describe access points that are shared by several
travel services.

Definition 6.2.5 (Junction Points).
The junction points between two maps M1 and M2 are defined as

J(M1,M2) = {(v1, v2)|v1 ∈ VM1 ∧ v2 ∈ VM2 ∧ sameP laceM1M2(v1, v2) = true}

Where the predicate sameP laceM1M2 : VM1 × VM2 → {true, false} decides
whether two nodes occupy the same position or not.

Furthermore let

JM1M2(v) = {w|v ∈ VM1 ∧ w ∈ VM2 ∧ (v, w) ∈ J(M1,M2)}

be a function that returns all junction points for a given node and fixed source
and destination maps and let Alias : V → V

Alias(v) = {w|w �= v ∧ ∃M1,M2 : sameP laceM1M2(v, w) = true}

be a functions that returns all nodes that are equivalent (with respect to the
sameP lace predicate) to a give node. Note that v itself is contained in this
set as well.

The actual decision whether two nodes of different maps represent a junc-
tion point is encapsulated in a specific predicate sameP lace in order to make
it easier to explicitly define junction points. A very straightforward definition
of the predicate is to base it on the Euclidean distance of two nodes, but more
sophisticated schemes can be implemented as well.

In the next steps in the formalization of the IMRP domain, we will define
how several individual travel services can be combined in a single intermodal
route. Therefore, we will first of all combine all individual travel services in
a joint map in order to ease the reasoning process over several services.

Definition 6.2.6 (Intermodal Map).
A intermodal map is a set of graphs (G1, . . . , Gn) with

• LGi ∩ LGj = ∅ ∀i, j ∈ {1, . . . , n} : i �= j, and
• VGi ∩ VGj = ∅ ∀i, j ∈ {1, . . . , n} : i �= j

Furthermore let MAPS denote the set of all intermodal maps and let
Map :

⋃
G∈{G1,...Gn} VGi → UMAPS be a function that maps a node to the

map that contains that node.

6.2 Personal Travel Assistant: Intermodal Route Planning 225

Now, we can express an intermodal route in terms of this underlying data
structure.

Definition 6.2.7 (Intermodal Route).
Let U = (M,R,G) be a named weighted unimodal route in M and define

further

• first(U) = first(M,R,G) = first(M, (v1, . . . , vn), G) = v1 and
• last(U) = last(M,R,G) = last(M, (v1, . . . , vn), G) = vn and
• V (U) = R and
• M(U) =M .

A sequence of unimodal routes MMR = (U1, . . . , Un) is called inter-
modal route between v1 and v2 iff

• v1 = first(U1)
• (last(Ui), f irst(Ui+1)) ∈ J(M(Ui),M(Ui+1))∀i ∈ {1, . . . , n− 1}
• v2 = last(Un)

Let R(MAPS) be the set of all intermodal routes and Γ : R(MAPS)→ RI
be defined as

Γ (MMR) =
{
MAXWEIGHT if MMR = ()∑

iweight(Ui) otherwise

The normal form ↓: R(MAPS) → R(MAPS) of an intermodal route
MMR = ((M,R,G)1, . . . (M,R,G)n) is defined as

MMR ↓= ((M,R,G)i0 , . . . (M,R,G)im))

with

• i0 < i1 < · · · < im
• Gij �= ∅∀j

In the above definition we require for any intermodal route that junction
points exist between any two successive unimodal routes that are combined
in the intermodal route. We also define a normal form on intermodal routes
in order to able to compare two intermodal routes and to rule out such routes
that contain empty unimodal routes.

In the last step of the formalization, we will define how to express a request
for an intermodal route in terms of the unimodal maps involved.

Definition 6.2.8 (Routing Scenario).
A sequence (M1, . . . ,Mn) of maps is called a routing scenario in the

set of unimodal maps (UMAPS) if the following conditions hold:

• vs ∈Mi1 ∧ vd ∈Mini for i = 1, . . .m and
• ∃v3, v4 : (v3, v4) ∈ J(Mij ,Mij+1) ∀i, j : i ∈ {1, . . . ,m}, j ∈ {1, . . . ni − 1}

226 6. Further Case Studies

Let RS(UMAPS) denote the set of all possible routing scenarios.
The function RS : V × V → RS(UMAPS) returns for

any two nodes vs and vd a list of possible routing scenarios
((M11, . . . ,M1n1), . . . , (Mm1, . . . ,Mmnm)).

Furthermore we define filter : RS(UMAPS) → RS(UMAPS) as fol-
lows

filter((M1, . . . ,Mn)) =
{
(M1, . . . ,Mn) valid(Mi) ∀i ∈ {1, . . . , n}
∅ otherwise

filter is extended on a sequence of routing scenarios by defining filter :
RS(UMAPS)n → RS(UMAPS)m as

filter(RS1, . . . , RSn) = (filter(RS1), . . . , f ilter(RSn))

The RS function serves as interface to some higher level service that pro-
vides all possible routing scenarios between any two nodes of any unimodal
travel services and the filter function operates as interface to the user pref-
erences just like the valid predicate defined above.

The major nonfunctional requirement for the target system is that its
architecture and the services provided must be FIPA compliant. Furthermore,
the answering time of the target system should lie within a range that allows
the user the on-line planning of a trip, thus the answering time will typically
range within a few minutes.

Another nonfunctional requirement is to evaluate two different architec-
tural approaches for solving the problem at hand. The first solution should
be a central planning approach that features one intermodal route planner
that uses the services provided by the unimodal planners. The other solution
should apply a distributed scheme where each unimodal planner can become
an intermodal planner upon a user request.

In this view, we have formalized the IMRP domain in terms of functional
abstractions that can be used by the subsequent views to develop a par-
ticular design for the application. We have also defined the nonfunctional
requirements of the target system and developed the basic problem solving
capabilities that are necessary in the PTA domain. In the next section, we
turn to the environment in which the application will be located.

6.2.3 Role View

In the IMRP application, we can identify two functional roles. The Unimodal
Route Planner is responsible for providing access to a particular travel re-
source and provides a planning service for this resource as defined below.

6.2 Personal Travel Assistant: Intermodal Route Planning 227

Algorithm 3 imrp(vs, vd)
1: for all v1 ∈ Alias(vs) do
2: for all v2 ∈ Alias(vd) do
3: result := result ∪ imrp na(v1, v2)
4: end for
5: end for
6: return result

Definition 6.2.9 (Unimodal Route Planer).
A function rp : VM × VM → R(M) for a map M that returns a weighted

route for any two nodes v1, v2 ∈ M , i.e. rp(v1, v2) = ((v1, . . . , v2), G), is
called a (unimodal) route planer for M

Furthermore, the following conditions must hold:

• (v1, . . . , v2) is a route from v1 to v2 and
• G is minimal.

The only atomic problem solving capabilities that is required for this role
is the ability to perform unimodal route planning by either planning from
first principles or by using an existing service and providing the result to the
other agents in the system.

The second roles that occurs in the scenario is the Intermodal Route Plan-
ner that combines the services of various unimodal route planners in a single
plan.

Definition 6.2.10 (Intermodal Route Planer).
A function imrp : VM × VM → R(MAPS) for a given set of maps

is a intermodal route planer iff imrp returns a list of unimodal maps
((M,R,G)1, . . . , (M,R,G)n) for any two nodes v1 and v2, i.e. imrp(v1, v2) =
((M,R,G)1, . . . , (M,R,G)n).

The process of combining the services of the unimodal route planners into
a single plan works as follows: On the first level of the planning process all
possible routes between all alias-nodes for the source node and alias-nodes of
the destination node are computed according to the following specification.

imrp(vs, vd) =
⋃

v1 ∈ Alias(vs)× v2 ∈ Alias(vd)
imrp na(v1, v2)

The implementation is shown in Algorithm 3.
Alias nodes exist iff the source or the destination node are junction points

with another map. In this case, all routes between all combinations of alias
nodes must be computed.

On the second level of the planning process, all routes for all routing
scenarios between two alias nodes are computed according to the following
formula that is implemented by Algorithm 4.

228 6. Further Case Studies

Algorithm 4 imrp na(vs, vd)
1: for all rs ∈ RS(vs, vd) do
2: route := imrp sc(vs, vd, rs)
3: if route �∈ result then
4: result := result ∪ {route}
5: end if
6: end for
7: return result

imrp na(vs, vd) =
⋃

rs ∈ RS(vs, vd)
imrp sc(vs, vd, rs)

The final design of the PTA/IMRP application uses two versions of role
aggregation in order to evaluate the advantages and disadvantages of one
approach or the other.

Broker In this version of the IMRP application, the functional roles are as-
signed to different agents, i.e. there is one IMRP agent in the scenario
that processes the user request and then tries to find UMRP agents that
provide services that match the users requirements.

Distributed The distributed version of the application does not assign a fixed
functional role to an agent, each agent can play both functional roles de-
pending on the context in which it is incorporated into the joint planning
process. If the agent is queried by the user, it acts as the IMRP the tries
to integrate services provide by other agents with it own local service
in order to generate a route plan. If, on the other hand, it is queried by
another agent acting as IMRP, it offers its local service as normal UMRP.

6.2.4 Interaction View

The agent interaction that is necessary within the IMRP domain is limited
to a rather simple requester-provider protocol. One agent will request a par-
ticular service from another agent which will serve the request and return the
result to the requester. The application does not feature any market mecha-
nisms or iterative refinements in the agent interaction process and is therefore
straightforward to implement.

I have mentioned earlier that the IMRP application uses two different
approaches to compute an intermodal route for a given routing scenario. In
the following, I will describe how the planning process works for each of
these different approaches. The control flow of the broker version is shown in
Figure 6.7: the user request the a route planning service from the IMRP agent
that in turn forwards partial requests to the UMRP agents and assembles the
results according to the user preferences. The computation uses a recursive
algorithm based on the following idea:

6.2 Personal Travel Assistant: Intermodal Route Planning 229

VIZ SSC EFA RGN

IMRP

Broker

User

Fig. 6.7. IMRP Broker Architecture

VIZ SSC EFA RGN

User

Select

Fig. 6.8. Distributed
IMRP Architecture

• If the source and the destination node are in the same map or if the routing
scenario consist of a single entry, the route can be computed by an indi-
vidual route planner agent. Note that a routing scenario can be of length 1
only if the destination node is a junction point to the map of the source
node.

• If the source and the destination node are in distinct maps, the optimal
route (wrt. to a given optimization criterion) is the minimum of all routes
between the source node and the intermodal route starting at any possible
junction point to the next map.

The formal description of the algorithm is given below. The implementa-
tion is shown in Algorithm 5.

imrp sc(vs, vd, rs) =

8>>>><
>>>>:

rpMap(vs)(JMvs Mvd
(vs), vd)

Map(vs) = Map(vd)

or |rs| = 1

min
(j1,j2)∈

J(M1 ,M2)

append(rpM1(vs, j1),
imrp sc(j2, vd, tail(rs)))

otherwise

230 6. Further Case Studies

Algorithm 5 imrp sc(vs, vd, rs) (Broker Architecture)
Require: rs ∈ RS(vs, vz)
1: if Map(vs) == Map(vd)||(|rs| == 1) then
2: minroute := rpMap(vs)(JMvs Mvd

(vs), vd)
3: else
4: minroute := ∅
5: for all (j1, j2) ∈ J(M1, M2) do
6: route := rpM1(vs, j1) + imrp sc(j2, vd, tail(rs))
7: if Γ (route) < Γ (minroute) then
8: minroute := route
9: end if
10: end for
11: end if
12: return minroute

In the distributed version of the application, the control flow in the appli-
cation is as shown in Figure 6.8: The user selects the most appropriate UMRP
agent (e.g. the service wrapper for the first service that the user intends to
travel with) and places a request. The UMRP will then play the role of the
IMRP in subsequent service requests to other UMRP agents and return the
result to the user.

The algorithm that implements this flow of control is specified by the
following equation. The implementation is shown in Algorithm 6.

imrp sc(vs, vd, rs) =

8>><
>>:

rp(vs, vd) Map(vs) = Map(vd)

min
(j1 ,j2)∈

J(M1,M2)

append(rp(vs, j1),
RPM2(j2, vd, tail(rs)))

otherwise

Algorithm 6 imrp sc(vs, vd, rs) (Distributed Architecture)
1: if Map(vs) == Map(vd)||(|rs| == 1) then
2: minroute := rpMap(vs)(JMvs Mvd

(vs), vd)
3: else
4: minroute := ∅
5: for all (j1, j2) ∈ J(M1, M2) do
6: route := rpM1(vs, j1) + RPM2(j2, vz, tail(RS))
7: if Γ (route) < Γ (minroute) then
8: minroute := route
9: end if
10: end for
11: end if
12: return minroute

6.2 Personal Travel Assistant: Intermodal Route Planning 231

IMRP RP

 query

1 *

knows

Fig. 6.9. Basic Society Structure

6.2.5 Society View

The society that operates in the IMRP domain is rather simple and consists of
two or three different entities, depending on which of the alternatives (broker
or distributed version) is considered. In either case, however, the structure of
the society is initially flat as shown in Figure 6.9. The user connects to the
IMRP agent which in turn calculates an intermodal route for the user request
by connecting the individual travel services and then returns the intermodal
travel plan to the user.

This simple form of the society structure is adequate as long as the number
of individual travel services is relatively small. However, in a scenario with a
large amount of individual travel service, e.g. when each UMRP represents
some local public transport facility, this society structure may no longer be
adequate. The IMRP agent cannot compute an intermodal travel plan in a
one-shot process but it must connect some intermediate IMRP agents that
interface to the local travel services. The respective society structure as shown
in Figure 6.10 results in a control flow that operates at several hierarchy
levels. First of all, the user queries the local IMRP agent that is responsible
for the area the user is currently located. Next, this IMRP agent forwards
part of the user request to other local IMRP agents that compute a partial
intermodal route for their area and return the solution to the first IMRP
agent that assembles a full intermodal route for the user request and returns
the solution to the user.

In this section, we have modeled the society structure of the IMRP appli-
cation and outlined some extension to the structure as it will be implemented
in a the first version of the system. In the next section, we will see how the
various features are transformed into a coherent system architecture.

6.2.6 Architecture View

System Architecture. In this section, I will characterize the required sys-
tem architecture according to the scheme given in Section 5.7.

Entities The only entities that occur in the target system are agents for
unimodal route planning and intermodal route planning, respectively.

232 6. Further Case Studies

IMRP

IMRP

IMRP

IMRP

IMRP

IMRP
IMRP

IMRP

IMRP

IMRP

IMRP

IMRP

Fig. 6.10. Hierarchical IMRP Orga-
nization

Control flow Because of the fact that the only entities are agents, the con-
trol flow within the system is determined by the Interaction view. The
same applies for the information flow.

Agent management Since the problem domain was chosen as an evalua-
tion domain for FIPA standards, the agent management will be handled
according to the requirements specified there.

Communication model The system architecture should allow for a geo-
graphical distribution of the system components and therefore provide
some network based message passing mechanisms. In order to be able to
debug the application locally, it is desirable to have local message passing
that can be traced within a single debugger.

Agent architecture The agent architecture will be discussed in the next
section.

Database design Since the individual agents within the system do not
share data explicitly, it is not necessary to provide a system wide
database.

External components/devices The external components that must be in-
tegrated in the target system are the existing travel services that are run
by external providers. These services must be encapsulated in agents in
order to achieve the required degree of inter-operability.

Thus, the overall system architecture is determined by the concepts spec-
ified in the FIPA standard that is used as the general basis of the application.
According to the above requirements, the MECCA agent application frame-

6.2 Personal Travel Assistant: Intermodal Route Planning 233

work [Steiner, 1992], [Gerber et al., 1999b] was chosen as the implementation
basis for the actual system because MECCA is a FIPA compliant framework
that provides libraries of pre-defined agents according to the FIPA standard
and includes a generic agent architecture as well as a protocol specification
language for the agents.

The target system is implemented in a fully parallel system environment
where all agents are running on different host computers. However, the dif-
ficult task of debugging a fully distributed system is eased as the MECCA
framework offers a transparent scheme for running the agents locally without
any changes to the code.

Agent Architecture. According to the characterization given in Section
5.7, the agent requirements are as follows.

Reasoning capabilities According to their actual role, the agents need
some planning facility that enables them to find an unimodal or an in-
termodal route using the given travel service.

Resources limitations The resource requirements of the agents is low because
the planning process mentioned above is not highly complex. However,
due to the necessary encapsulation of external services, the agents will be
equipped with the computational resources of a complete workstation.

Control flow The control flow within the agent is determined by the algo-
rithms described in Section 6.2.4 and is basically a sequential one. It is
therefore not necessary for the agent architecture to provide a parallel
execution model.

Knowledge Representation The major knowledge structures used by the
agents are the unimodal and intermodal plans. These plans must be ex-
plicitly represented in a knowledge base as they are likely to change in the
course of the route planning process and because they must be transfered
to a human-readable form.

Autonomy The agents in this limited part of the full scenario do not ex-
hibit any pro-active behavior as the only react to a user request or to a
request from another agent to provide some well-defined service. In the
full scenario, however, the agent are supposed to become active whenever
the external state as observed by the agent contains some information
that may be useful for their user. Still, this is not subject of this part of
the system.

User interaction The degree of user interaction is not very high for this
part of the system and is limited to the route specification in form of
start and destination nodes, travel times, preferred travel modalities and
probably a few other things. Therefore, the agents user interface will not
need any particular attention.

Temporal context The lifetime of an agent in the target system can be
quite long as the unimodal route planners are supposed to encapsu-
late real-world services that are available 24 hours a day. However, the

234 6. Further Case Studies

Body Head

M
outh

Fig. 6.11. MECCA
Agent Architecture

Agent
Directory
Service

Heuristic
Configuration
Tool

Test
Configuration
Tool

Map
Visualizer

Status
Window

Fig. 6.12. IMRP Graphical User Interface

agents do not need any persistence mechanisms because these are already
present in the underlying services.

Because of the above requirements, the MECCA agent architecture was
the first choice as agent architecture. MECCA agents are specifically designed
to serve as wrapper for proprietary software systems that are to be used in
a multiagent systems and are thus well-suited for the encapsulating of the
individual travel services. A MECCA agent consists of three parts as shown
in Figure 6.11.

The agent body encapsulates application specific functionalities e.g. ex-
isting SW systems, databases etc., the head: contains the goals and plans of
the agent and controls the body via the application interface. Furthermore, it
also contains the protocol execution unit that can manage several contexts at
the same time. The communicator, finally, is the physical communication in-
terface that implements low-level communication protocols such as TCP/IP,
GSM or IIOP.

6.2.7 System View

Graphical User Interface. The User interface of the IMRP system as
shown in Figure 6.12 consists of five major elements that are briefly described
below.

6.2 Personal Travel Assistant: Intermodal Route Planning 235

Map Visualizer The Map visualizer window contains the graphical repre-
sentation of the unimodal maps that are managed by the unimodal route
planners. The user selects the start and the destination node of the jour-
ney and is then queried for the temporal constraints. The system will then
calculate an intermodal route according to the provides specification.

Test Configuration Tool In order to evaluate the different approaches pre-
sented earlier, the user can select between the broker and the distributed
variant and between the optimal computation of the intermodal route
and the use of a heuristic as is described in Section 6.2.7.

Heuristic Configuration Tool This window allows the user to select the
heuristic and the parameters of the heuristic. The heuristics that can be
used as well as their parameter settings are described in Section 6.2.7.

Status Window The Status window informs the user about the result of
the computation (e.g. the length or the duration of the intermodal route)
and about exceptional situations such as constraint inconsistencies that
occur e.g. when the time window is to tight for particular start and
destination nodes.

Agent Directory Service This window, finally, is provided by the FIPA
compliant MECCA agent platform and contains the names of the agents
currently known to the system. The user can click on the agent name to
obtain additional information about the respective agent.

Since the intermodal route planning facility is only a service that is pro-
vided in a larger context, the user interface is only very fragmentary. It is,
however, functional enough to enable the user to experiment with the dif-
ferent variants of the system. Experiments that were conducted with early
versions of the system showed, that the system performance might become
unacceptable if the number of unimodal maps and the size of these maps
increases beyond a particular point. Therefore, several attempts were made
to obtain rather good – though not optimal – solutions with a reduced effort.
The results of these attempts are discussed in the following section.

Performance Engineering.

Suboptimal Solutions. Until now, the IMRP agent has computed optimal
routes for each user request which implied the exploration of the entire search
space. In this section, we present some search heuristics that aim at finding
sufficiently good solutions with less computational effort. The main idea of the
search heuristics discussed below is a flexible steering of the search process by
narrowing the set of junction points between two adjacent maps in a routing
scenario.

Therefore, we define a selection function for the junction points that
should be expanded during the search process as follows.

236 6. Further Case Studies

Definition 6.2.11 (Selection Function).
Define select : (V, V)n → (V, V)m, n ≤ m as select({vi, vj |(vi, vj) ∈

J(Mk,Mk+1)}) = {vo, vp|(vo, vp) ∈ J(Mk,Mk+1)} i.e. select chooses an ar-
bitrary subset of the junction points for any two maps.

Now, by using the select function from definition 6.2.11, we extend the
search algorithm such that it expands only the selected nodes. In the fol-
lowing, this extension is implemented using the broker architecture discussed
earlier, the changes apply in an analogous way to the distributed architec-
ture. The modified broker algorithm is given below, the implementation is
shown in Algorithm 7.

imrp sc(vs, vz, rs) =

8>>>><
>>>>:

rpMap(vs)(JMvs Mvz
(vs), vz)

Map(vs) = Map(vz)

or |rs| = 1

min
(j1,j2)∈

select(J(M1 ,M2))

append(rpM1(vs, j1),
imrp sc(j2, vz, tail(rs)))

otherwise

Algorithm 7 imrp sc(vs, vz, rs) with selection function (Broker Architec-
ture)
Require: rs ∈ RS(vs, vz)
1: if Map(vs) == Map(vd)||(|rs| == 1) then
2: minroute := rpMap(vs)(JMvs Mvd

(vs), vd)
3: else
4: minroute := ∅
5: for all (j1, j2) ∈ select(J(M1, M2)) do
6: route := rpM1(vs, j1) + imrp sc(j2, vd, tail(rs))
7: if weight(route) < weight(minroute) then
8: minroute := route
9: end if
10: end for
11: end if
12: return minroute

As we have seen, the integration of the selection function is quite straight-
forward but it is yet unspecified how a particular selection might work to pro-
duce satisfactory results. Therefore, we first of all define a generic selection
function and then instantiate this generic function to obtain specific selection
functions.

The generic select function operates in three steps:

1. Generate a partial ordering on the set of possible junction points.
2. Sort the junction points according to the partial ordering.
3. Select the best candidates.

6.2 Personal Travel Assistant: Intermodal Route Planning 237

M1 M2 M3

h1 h2

act goal

Fig. 6.13. Generic Selection Func-
tion

Figure 6.13 illustrates the process. In the first step, we assign a weight
to each junction point x with respect to the current search node act and the
destination node gaol according to

g(x) = h1(act, x) + h2(x, goal)

where h1 estimates the weight of the route from the current node to the
junction point and h2 estimates the weight of the route between the junction
point and the goal. Now we can sort the list according to the combined
weights and select the best nodes according to a given evaluation depth.

In the following description, we discuss some instantiations of the generic
select function by specifying the two estimation functions h1 and h2 and the
evaluation depth of the final selection step.

Optimal Selection This instantiation realizes the standard case without nar-
rowing the search space. All possible junction points are selected which
guarantees, that the optimal solution is found. This instantiation is
mainly included for the sake of completeness.

h1(act, x) = weight(rp(act, x))
h2(x, goal) = weight(rp(x, goal))

Obviously, all junction points must be selected in order to guarantee
optimality in the search process.

Greedy Search This variant of the select function considers only the locally
best alternatives. Therefore, we first define the following concepts.

Definition 6.2.12 (k-best Search). k-best search expands only the
first k junction points that have the shortest distance to the source node
of the route.

Definition 6.2.13 (k-best Junction Points). topJPs : UMAPS ×
UMAPS × V × NI → (V, V)n is defined as

238 6. Further Case Studies

topJps(M1,M2, v, k) = ((j11, j12), . . . , (jk1, jk2)) with
(∀i ∈ {1, . . . , k} : (ji1, ji2 ∈ J(M1,M2)∧
(∃l ∈ LM , i ∈ {1, . . . , k} : α(l) = v∧ ∈ ω(l) = ji1)∧
(∀j /∈ jil∀i ∈ {1, . . . , k} : γ(v, j) > γ(v, ji1)))

We obtain a greedy algorithm by setting select(J(M1,M2)) =
topJPs(M1,M2, vs, 1). This corresponds to the following setting

h1(act, x) = weight(rp(act, x))
h2(x, goal) = 0

In the second step of the selection process, only the first junction point in
the ordered set is expanded, an obvious extension of the algorithm is to
select not only the best junction point, but the k best junction points by
setting select(J(M1,M2)) = topJPs(M1,M2, vs, k) for some fixed value
of k.

Euclidean Distance Measure The Euclidean distance between two points p =
(x1, y1) and q = (x2, y2) is defined as

d(p, q) = d((x1, y1), (x2, y2)) =
√
(x1 − x2)2 + (y1 − y2)2 (6.5)

From this definition, we can derive three different heuristics:

h1(act, x) = weight(rp(act, x))
h2(x, goal) = d(x, goal)

h1(act, x) = d(act, x)
h2(x, goal) = weight(rp(x, goal))

h1(act, x) = d(act, x)
h2(x, goal) = d(x, goal)

The k best junction points are selected from the ordered set of junction
points according to the given evaluation depth.

Precedence Ordering on Maps This heuristic uses a partial ordering defined
on the set of unimodal maps. We define a weight function w : UMAPS →
RI that assigns a weight to each unimodal map. We set

h1(act, x) = weight(rp(act, x)) ∗ w(Map(act))
h2(x, goal) = weight(rp(x, goal)) ∗ w(Map(x))

to obtain the map precedence heuristic.
Figure 6.14 shows an example with two maps indicated by the solid and
the dashed line, respectively. The solid line map represents the public

6.2 Personal Travel Assistant: Intermodal Route Planning 239

Destination

Start

Fig. 6.14. Example 1

Destination

Start

Fig. 6.15. Example 2

transport service of a city, whereas the dashed map represents the inter-
regional individual traffic.
Using this heuristic, a route query from “source” to “destination” will
yield a solution as it is shown in Figure 6.15. This solution reflects the
shortest path from the source to the destination node, but it neglects the
fact that the public transport is usually much more time consuming then
individual traffic. Generally speaking, it is often more efficient to leave
the city as fast as possible and to use high speed individual traffic routes
around the city.
Using a precedence ordering on maps (and implicitly on means of trans-
port), the higher preference for individual transport towards public trans-
port yields the result presented in Figure 6.16.

240 6. Further Case Studies

Destination

Start

Fig. 6.16. Example 3

Caching. The maximum number of unimodal routes that must be computed
for an intermodal route (U1, . . . , Un) is a function of the number of junction
points between the unimodal maps for a particular routing scenario. For a
given routing scenario rs = (M1, . . . ,Mm), the number of possible unimodal
routes (#rs) computes as follows:

#rs(vs, vz , ()) = 0
#rs(vs, vz, (M)) = 1

#rs(vs, vz, (M1, . . . ,Mm)) = |J(M1,M2)|+∑
(j1,j2)∈J(M1,M2)

#rs(j2, vz , (M2, . . . ,Mm))

(6.6)

The recursive formula (6.6) is not optimal for practical purposes and
therefore we also give the number of possible unimodal routes in a non-
recursive form. Note that we define |J(Mm,Mm+1)| = |J(Mm+1,Mm+2)| = 1
in Formula 6.7.

#rs(vs, vz, rs) =
m+1∑
i=1

j≤i∏
j=1

|J(Mj ,Mj+1)| (6.7)

Comparing this to the number of unique unimodal routes which computes
to

#unique(vs, vz, rs) =
m−1∑
i=1

|J(Mi,Mi+1)| ∗ |J(Mi+1,Mi+2)| (6.8)

reveals a high potential for performance gains if the re-computation of
unimodal routes can be avoided. For example, given three maps with 10

6.3 Summary 241

junctions points between each of them, we obtain a total of 111110 unimodal
routes that must be combined according to equation 6.7 out of which only 300
are unique according to equation 6.8. To take profit from this discrepancy,
we define a generic cache as follows.

Definition 6.2.14 (Generic Cache). A cache is a data structure that
stores (key, value) pairs where key ∈ KEY and value ∈ V ALUE. We define
functions store, retrieve and flush that operate on these (key, value) pairs.

store : KEY × V ALUE → {success, failure}

store(k, v) = success, C′ = (C\{(k, v′)|v′ �= v}) ∪ {(k, v)} (6.9)

retrieve : KEY → V ALUE

retrieve(k) =
{
v falls(k, v) ∈ C
∅ sonst

(6.10)

flush :→ {success, failure}

flush() = success, C′ = ∅ (6.11)

Now, whenever the IMRP needs a particular unimodal route, it first checks
the cache whether it already contains the route or not. In the first case, the
route is used directly whereas in the second case, the IMRP agent issues a
request to the UMRP in charge and then stores the result in the cache for
potential reuse.

6.3 Summary

In this chapter, we have seen two additional case studies to demonstrated the
usefulness of the Massive method in real world applications. The Team-

work Library is a collection of software components that support the de-
velopment of multiagent applications according to the teamwork distributed
search paradigm. The Massive method turned out to be adequate for such a
general setting that as well as for more specific domains such as trip planning.
The multiagent solution for the intermodal route planning service within the
PTA domain has shown how industrial standards such as FIPA can be easily
integrated into the design of a multiagent system.

7. Conclusion

The basic properties of an ideal software development method for multiagent
systems were defined in the introduction: the method should be flexible, open,
simple, scalable, support learning and reuse, have little institutional overhead
and relate to established software engineering concepts.

In order to accomplish these goals, I have presented a development method
that is built according to these fundamental requirements. The Massive

method consists of three major parts: the core of the Massive method is a
system of views that form the conceptual basis for a wide range of product
models that are developed and refined throughout software projects that are
carried out according to the suggested process model. The main idea of the
process model is an Iterative View Engineering approach that is itself based
on Iterative Enhancement and Round-trip Engineering. The overall process
model contains several small micro models that are used for individual tasks
within the design process for a particular view. These micro models as well
as the overall process model are not fixed for the entire lifetime of the project
model, but they are subject to changes and refinements during the course of
time. In order to preserve these adaptations and to make them accessible to
others, the process model and the product model are both embedded into
a larger organizational structure called the Experience Factory. The Experi-
ence Factory provides the formal framework for a permanent learning process
that takes place over project boundaries and that eventually models the mul-
tiagent experience of organization in terms of specific product and process
models for various domains.

The Massive method implements the above stated requirements as fol-
lows: it is flexible because it allows the designer to use and adapt products
and processes at various levels of abstraction. The macro development process
consists of several micro processes for individual parts of the product model
and this macro process as well as the micro processes can be adapted to the
needs of a particular project. The product model that has been introduced
provides a generic base structure for a wide range of multiagent systems and
can also be adapted according to project specific requirements.

TheMassive method is open in that it does not rely on a particular tech-
nology such as a programming language or a specific computational model.
It has been demonstrated in the case studies that the method works with

J. Lind: The MASSIVE Method, LNAI 1994, pp. 243-246, 2001.
 Springer-Verlag Berlin Heidelberg 2001

244 7. Conclusion

such different programming languages as Oz, Java or C++. Furthermore, it
works for fully distributed applications as well as for threaded applications
in a single process.

The method is sufficiently simple in that it is straightforward to apply
and does not require intensive user training. A lot of the concepts used in the
Massive method are common sense and easily understood by a developer.
The product model is detailed enough to enable the developer to structure the
target system without getting lost in fine grained details that are irrelevant
in a particular context.

The Massive method is scalable as it can be used by a single developer
playing all roles as well as by a larger development team where the roles are
assigned to actual persons.

Learning and reuse over project boundaries are supported by the concept
of the Experience factory that is used to structure and package all sorts
of experiences that are made during the course of a project. The resulting
knowledge packages are selected for reuse in subsequent projects according
to a case-based reasoning mechanism that provides the knowledge structures
that are most suitable in a particular situation.

The Massive method has only little institutional overhead because it can
be introduced into a particular organization in parallel to the ongoing busi-
ness processes. The Experience factory can be set up over a certain period
of time without interfering with the current projects and it can be smoothly
integrated step-by-step into the project execution process. The impact on the
project organization are minimized as the team members are not forced to
contribute to the experience acquisition process because a separate organiza-
tional unit is responsible for the analysis and evaluation of a project.

Finally, the method presented in this book is built upon standard software
engineering techniques and principles that have been developed over many
years and demonstrated their validity in practical situations. The macro pro-
cess of the Massive method combines Iterative Refinement and Round-trip
Engineering and puts them in the larger context of the Experience Factory.
The suggested view-oriented product model is based on the ideas of aspect-
oriented programming and allows the developer to model the system as a
whole and viewing it from different angles.

The next step in the advancement of the Massive method is to set up
some tool support for the activities that are performed in the course of a
project. Interestingly, one of the most recent topics in the design research
community is to use multiagent technology to support the design process
[Lander, 1997] [Petrie et al., 1998]. Hence, the next step in the development
of the Massive method is to use the development method to built a multia-
gent system that supports the method itself!

But first of all, why are multiagent systems of particular interest to the
design research community? According to [Lander, 1997], multiagent design
systems (MADS) provide the conceptual framework to model systems of flex-

7. Conclusion 245

Project
Characteristics

Project
Characteristics

Project
Characteristics

Project
Characteristics

Project
Characteristics

Market

Fig. 7.1. MADS View System Selection Process

Fig. 7.2. MADS Supported View Con-
struction

ible, sophisticated expert agents that collaborate in order to support a human
project team in the course of the design process. The individual agents within
the system can be personal assistant agents (wizards) that provide the nec-
essary support for humans in the distributed design process.

The well-defined agent boundaries provide separable interfaces to the de-
sign process and support the locality of information because the internal spec-
ifications of a design element are not communicated over agent boundaries.
Thus, each agent represents a particular design element or a design process
and is responsible for keeping the other agents up to date about changes that
are relevant to them while at the same time hiding changes that have only
local effects.

246 7. Conclusion

To illustrate how a MADS for the Massive method might look like, I will
briefly outline how the model selection process at the beginning of the project
and the model construction process can be supported by a MADS. The first
step in any project that is based to the Massive development method is to
find the most appropriate view system for the project. In Figure 7.1, we have
several agents and each of those agents represents a particular view system.
Now the user announces the project characteristics to the agents and they
begin a negotiation process in order to find out which of them represents a
model that is most suited for the project.

In a second step, the winning agent of the model selection process is then
split up into several sub-agents each of which represents a particular view in
the view system as shown in Figure 7.2. The sub-agents can be implemented
as assistance agents that support the user in the construction of a particular
view and that informs other sub-agents about relevant changes in the design.

A. Toolkits for Agent-Based Applications

In this chapter, I will review three tool-kits for the development of multia-
gent applications. These packages usually offer predefined structures or even
tools that can be used by the application developer to build his or her own
system using the provided structures that are common to most multiagent
applications. All tool-kits discussed in this section are freely available and
result from research work in the area, commercial frameworks have not been
considered for this section.

A.1 SIF

The Social Interaction Framework (SIF) [Lind, 1998], [Funk et al., 1998],
[Schillo et al., 1999] is an open, easy-to-use testbed for multiagent applica-
tions. It is intended as a simulation tool for interaction-intensive societies and
is – as opposed to most other testbeds – not limited to communication but
supports various forms of interaction.

SIF provides an open simulation environment that allows the integra-
tion of agents with different architectures in distributed environments. The
fine-grained action and perception modeling allow for the design of complex
virtual worlds without any predefined semantics on percepts (“The world
does not come labeled” [Edelman, 1987]). Furthermore, SIF supports rapid
prototyping by providing off-the-shelf components for the simulation of a
wide range of interaction environments and also provides flexible human user
interaction through the use of avatars. SIF can be used on a number of dif-
ferent platforms because of using standard technology whenever possible e.g.
Java [Sun Microsystems, 1999], VRML97 [The VRML Consortium, 1997] or
CORBA [Object Management Group, 1999].

The interaction model of SIF is based on the Effector-Medium-Sensor
(EMS) Model [Lind, 1998] which is a conceptualization of the broad agent
definition given in [Russell and Norvig, 1995] that “An agent is anything that
can be viewed as perceiving its environment through sensors and acting upon
that environment through effectors.” An example for applying this definition
to human speech interaction is shown in Figure A.1.

The speech apparatus of the agent on the left hand side of Figure A.1 is
the effector that triggers the medium which in turn delivers some perception

J. Lind: The MASSIVE Method, LNAI 1994, pp. 247-254, 2001.
 Springer-Verlag Berlin Heidelberg 2001

248 A. Toolkits for Agent-Based Applications

Fig. A.1. The EMS Idea

Fig. A.2. The EMS
Model

to the sensor unit of the agent on the right. Thus, the EMS paradigm captures
a very natural model of interaction.

A more technical view onto the EMS model that describes the basic con-
trol cycle of an agent is shown in Figure A.2. Whenever several agents are
connected to the same medium they can interact with each other by changing
the state of the medium. The data-flow within the system is asynchronous
due to the independence of the control flow of the agents from the control flow
of the medium and the control flow is multi-threaded. Furthermore, the SIF
framework implements a subject-oriented point-of-view because the agents
locally perceive the world state.

The agents themselves need not have a specific architecture as long as
the architecture fulfills a minimal conceptual framework that is shown in
Figure A.3. According to the minimal requirements, each agent must have its
local thread of execution, the agent must implement a decision function that
computes its next action on the basis of the agents current world model and
action invocation must be performed asynchronously in order to prevent an
agent from blocking the medium and thus the actions of other agents. Note
that the action execution is not guaranteed to succeed, i.e. an agent can issue
a particular action activation to the medium, however, if the action is not
valid in the context that is defined by the medium it will simply be ignored.
It is therefore important for the agents to monitor their action execution and

A.1 SIF 249

Fig. A.3. Conceptual Agent Model of SIF

Fig. A.4. Information and Control Flow in SIF

not to simply assume that an action will be executed once it is submitted to
the medium.

The task of the medium is to model the environment from a static (en-
tities) and dynamic (physics) point-of-view. Thus by designing the medium,
the designer defines which entities can be found within a particular world
and how the world changes according to action invocations of the agents.
The basic control cycle of the medium is shown in Figure A.4.

In each cycle, the medium receives the effector activations of the agents
and places them in a queue of pending activations. Then it fetches the first
of the pending activation requests and updates the world model according
to the effects of the activation. If a particular action is not allowed because
of the current state of the world, it is discarded. If, on the other hand, the
world state has changed because of a valid action, the medium generates
perceptions as the projections of the current world state onto the sensors of
each agent.

The visualization of the world state is always modeled from the point-of-
view of an agent. However, to enable the user to have a global model of current

250 A. Toolkits for Agent-Based Applications

Fig. A.5. SIF User In-
teraction

state, a special “omnipresent” agent that can perceive the full world state is
provided. Uniformly modeling the visualization devices as agents supports
the use of difference technologies because it provides a well-defined interface
between the medium and the visualizing agent. In the current implementation
of an example application for SIF, a 2D Java-based visualizing agent and a
3D VRML-based visualizing agent were used to present to same world at the
same time to different users on different machines.

In SIF, user interaction is achieved by using so-called control pads to steer
the agent directly. The integration of user commands is achieved via an extra
indirection cycle as shown in Figure A.5: the agent has special effectors to
perceive user commands that change its behavior accordingly. The additional
indirection de-couples the agent and the user in a way that enables the agent
to carry on with its normal operation when no user commands are given and
to react to the user inputs whenever this is requested. This scheme provides
the necessary flexibility to use the agent as an avatar that is autonomous
to a certain degree and reliefs the user from having to specify every single
behavior activation.

The SIF tool-kit has shown that it is a truly open testbed that can be
used to implement applications with SIFAgents, InteRRaP agents or MECCA
[Steiner, 1992] agents. The flexible visualization mechanism can be used to
generate different views on the same virtual world and the control mechanism
that is provided is well-suited for applications with semi-autonomous agents.
SIF is platform independent and provides a library of pre-defined off-the-
shelf components and algorithms for rapid prototyping and the underlying
EMS paradigm allows for the definition of a large variety of different virtual
environments. However, developing world models is a work-intensive task
because of the fine granularity of the simulations.

A.2 ZEUS 251

Coordination Layer

Organization Layer

Definition Layer

Communication with
other agents

effectorssensors

API Layer

Communication Layer

Fig. A.6. ZEUS Agent Archi-
tecture

A.2 ZEUS

The goal of the ZEUS system [Nwana et al., 1999] is to provide a design
method and tool support for the engineering of distributed multiagent appli-
cations. The provided tools all encompass the direct-manipulation metaphor
and allow the designer to use drag-and-drop technology to assemble the ap-
plication from pre-defined components.

The tool-kit allows the designer to specify models for different types of
agents, for the organizational structure of agent societies and for negotiation
models. The negotiation models are either pre-defined or the can be build by
the designer if no appropriate pre-defined model is available for a particular
task.

ZEUS agents all have the same architecture as shown in Figure A.6 that
consists of the definition layer that implements the reasoning and learning
capabilities of the agents, the organization layer that manages and maintains
the relationships with other agents and the coordination layer that is respon-
sible for the inter-agent coordination and that also contains the negotiation
knowledge.

Two additional layers are provided that are responsible for the technical
framework of the agents. These additional layers are the communication layer
that provides the communication facilities for the communication with other
agents and the API layer that serves as the world interface of the agents.

The ZEUS tool-kit is mainly a collection of editors that can be used to
develop multiagent applications according to the three models mentioned
above. The Ontology Editor is used to define the domain ontology, the task
within a particular domain are described with the Task Description Editor

252 A. Toolkits for Agent-Based Applications

Fig. A.7. ZEUS Screen shot

that is supported by the Summary Task Editor that is used to define the
task compositions of several sub-tasks to a larger task. The Organization
Editor is used to define the organizational relationships among the agents
and their mutual beliefs, the Agent Definition Editor is the tool to construct
the agents with the architecture described earlier. The Coordination Editor
is either used to select existing protocols from a protocol library or to define
new protocols from scratch. A Fact/Variable Editor is provided to describe
facts that hold in the problem domain using the ontology defined earlier.
Furthermore, a Constraint Editor is used to specify the constraints among
one or more preconditions of a single tasks, the precondition and effects of
different tasks or the effects of a preceding task and the preconditions of a
succeeding task in a summary tasks description. The Code Generation Editor,
finally, is used to specify the code characteristics of the target language.

Besides this extensive collection of editors that allow for the easy definition
of various aspects of the target system, the ZEUS tool-kit also provides a large
collection of tools for the visualization and debugging of the application. The
most important tool is the visualizer that is itself implemented as agent. The
visualizer requests local information from the other agents and constructs a
global view of the system that is presented to the designer or to the user.
Additionally, the tool-kit provides a society tool that serves as the message
monitor for the messages that are exchanged among the agents, a report
tool that shows the current state of task decomposition and execution, the

A.3 Swarm 253

Fig. A.8. Swarm Hierarchy

micro tool that is used to inspect the internal state of an agent, the control
tool to remotely modify the internal state of an agent, the statistics tool the
generates individual and society-wide statistics and, finally, the video tool that
is used record and replay system runs. A screen shot of the ZEUS system that
contains the control tool and the society tool is shown in Figure A.7.

All in all, the freely available ZEUS tool-kit provides a comfortable and
flexible framework for the development of multiagent applications. However,
ZEUS is limited to task-oriented systems and it restricts the designer to a
particular agent architecture that may not be suited for all kinds of applica-
tions.

A.3 Swarm

Swarm [Hiebeler, 1994], [Minar et al., 1996], [Burkhart, 1997] is a domain-
independent simulation toolkit that is based on a discrete event mechanism.
The basic units of a Swarm simulation are agents that generate events, the
events that are exchanged among agents is called a schedule of events. The
structure that is built on top of the basic units consists of a collection of
agents and their schedule of events and is referred to as a swarm. Swarms
represent recursive structures as a swarm can be seen as a single agent within
another swarm as shown in Figure A.8. Each of the ellipses represents a swarm
that consists of several agents (circles) and a schedule (indicated by the clock
symbol). In a swarm, some of the agents are themselves swarms as shown in
the figure.

The Swarm toolkit provides several libraries that allow the designer to
specify the events that the agents can generate and the (hierarchical) struc-
ture of the swarms. The provided libraries are grouped in three classes.

254 A. Toolkits for Agent-Based Applications

The simulation library contains swarmobject classes that are used to
describe the base objects of the simulations, the activity classes that are
responsible for the scheduling and execution support and the simtools that
are used to specify the type of simulations, e.g. interactive or batch mode,
etc.

The software support library consists of the defobjs and collections
classes that provide general-purpose OO support such as common data-
structures etc., the random classes that implement the random number sup-
port and the tkobj classes that hold then Tcl/Tk [Ousterhout, 1994] interface
for the visualization of the simulation.

The model specific library, finally, embody classes for special purpose ap-
plications such as the space classes for two-dimensional discrete lattices, the
ga classes for genetic algorithms or the neuro classes for a variety of neural
networks.

The major advantage of the Swarm tool-kit is that it is an extremely
flexible approach that allows for the hierarchical modeling of multiagent sim-
ulations. The holonic approach supports reuse and the assemblance of appli-
cations out of already developed components. However, the focus of Swarm
simulations is clearly on applications that consist of agents with very little
reasoning and communication capabilities. Therefore, it is only of limited use
for the analysis of applications with complex individual entities.

A.4 Summary

In this chapter, I have presented some tool-kits for multiagent applications
that provide development support for multiagent systems with different char-
acteristics. Whereas the Swarm tool-kit focuses on applications with fine
grained agents that turn up in large numbers, the SIF library is concerned
more with virtual, co-habited worlds that need flexible interaction and visu-
alization mechanisms. The ZEUS tool-kit is probably closest to an industrial
tool-box as it provides a vast amount of editors, code generators and pre-
defined interaction and problem-solving mechanisms. Thus, before building
their own middle-ware, potential multiagent application developers should
consider the tool-support that is available on the market.

B. Basic Problem Solving Capabilities of TCS
Agents

B.1 Planing Algorithm for a Single Task

The planning process for a single task completion consists of three steps:

1. Finding the shortest path between the source and the destination node.
2. Forward propagation of arrival times.
3. Backward propagation of departure times.

In the first step a simple Dijkstra-Algorithm is applied to the input nodes
in order to find the shortest path between the source and the destination
node. In the next step, the buffer time for the task is distributed over the
intermediate nodes. The buffer time of a task is the fraction of the time
window of the task that is not needed by driving operations of the module.
Consider, for example, a task that is given by its source and destination
nodes and its time window consisting of the Earliest possible Departure Time
(EDT) and the Latest allowed Arrival Time (LAT). A module that serves
this task will need a particular time to drive from the source node to the
destination node. If the size of the time window of the task is bigger then
the time needed to drive from the source to the destination node, the module
has some additional time it can spent e.g. because it must wait for a location
route that is occupied by another module to become free again or if it wants
to couple together with another module for location route sharing. The buffer
time of the module is equally distributed over the intermediate nodes of the
plan such that the module knows exactly for each node when it must arrive
at the node and when it must leave from the node such that it can still fulfill
the overall time window constraints.
The process of forward and backward propagation is illustrated in Figure

B.1. If the module leaves the source node at time EDT then it will arrive
(assuming that no route failures occur) at the destination node at time ECP
(Earliest Completion Time). If, on the other hand, the module leaves at the
Latest allowed Departure Time (LDT), it will not be able to complete its
task before the LAT.

J. Lind: The MASSIVE Method, LNAI 1994, pp. 255-260, 2001.
 Springer-Verlag Berlin Heidelberg 2001

256 B. Basic Problem Solving Capabilities of TCS Agents

Forward
Propagation

Backward
Propagation

EDT

LAT

...
LDT ECP

Fig. B.1. Time Window Propagation

Planer

-parent : TCSUnion

+integrate(PlanList :) : NewPlanList
+makePlan(Spec : , Request : PlanRequest) : Plan

Configuration Options:
joinDuration
splitDuration
minimalSharingLength
searchTimeout

Plan

+getCost() : int
+overlap(P : Plan) : IndexList1, IndexList2
+update(P : Plan)

PlanRequest

-edt
-fromNodeID
-lat
-toNodeID

DataStructuresDataStructures

TimeWindow

-endTime
-startTime

+intersect()

Fig. B.2. Planer
(UML)

B.2 Plan Integration Operator

I will now describe the plan integration operator for the plans of n distinct
modules. Plan integration means, that the operator takes the n plans as in-
put and modifies these plans by inserting join and split actions such that the
resulting plans imply a maximum degree of location route sharing. The inte-
gration operator is used by the unions to decide whether they can integrate
a new module into their set of modules or not.
I will use the following rather simple example to illustrate the basic

ideas: two unions U1
1 and U2

2 with modules M1 and M2 serving tasks
T1〈A, F, 10, 60, 0〉 and T2〈C, G, 9, 50, 0〉 respectively. Basically, plan integra-
tion is achieved in five steps:

B.2 Plan Integration Operator 257

1. Find location route matches
The first step in the plan integration operation is to find an overlapping
sequence of location routes in the plans. In the example, the path of
module M1 is ABDEF and the path of module M2 is CDEG. Thus, the
two paths overlap in DE. If no overlapping is found, the plan integration
process is aborted. For n plans, the general overlap condition is ∀i∃j :
overlap(Mi, Mj) �= ∅, i.e. for each module, there must exist at least one
sharing peer in the union.

2. Generate joint actions
If the overlap condition holds, the next step in the plan integration pro-
cess is to generate join and split actions for the respective plans. These
actions are referred to as joint actions because they require two modules
to coordinate their individual actions. In the example, the two modules
join in nodeD and split in node E, the actions to be inserted are therefore
M1.D.actions =[(type:join peers:[M2] ...)]
M2.D.actions =[(type:join peers:[M1] ...)]
M1.E.actions = [(type:split peers:[M2] ...)]
M2.E.actions = [(type:split peers:[M1] ...)]

3. Minimize number of joint actions
The number of joint actions generated in the previous step is not optimal
because the generation process considers only the local context of the
action, i.e. only a single step in the plan. Due to prior actions of a module,
however, some actions are obsolete and can be eliminated. To illustrate
this situation, assume another Module M with task T 〈B, G, 10, 60, 0〉.
Integrating the three modules M1, M2 and M , yields three overlapping
pieces
a) (M1, M2) = DE
b) (M1, M) = BDE
c) (M2, M) = DEG

resulting in three bilateral actions pairs
a) (M1, M2): join at D, split at E
b) (M1, M): join at B, split at E
c) (M2, M): join at D, split at G

This results in a generation of two join actions for module M2 at node
D: one with M1 and one with M . These two actions can be reduced to
a single action M2.D.actions = [(type:join peers:[M1M] ...)] because M1

and M are already linked due to their prior join operation at node B.
While this is rather trivial in this example, it is not the case in more
complex plans where previous join and split actions must be recursively
traced for a large number of modules.

4. Specify joint action constraints
In this step, the time windows of the newly generated actions are spec-
ified. The conditions that must hold are that actions must take place
within the time windows of the plan steps of the respective modules and

258 B. Basic Problem Solving Capabilities of TCS Agents

time window action 1

time window action 2

example schedule

valid time range

action 1
action 2

Fig. B.3. Action
Scheduling

that the joint actions must take place simultaneously. In the example,
the resulting constraints are
M1.D.actions.1.t = M2.D.actions.1.t = max(M1.D.t, M2.D.t)
M1.D.actions.1.t = M2.D.actions.1.t = min(M1.D.t, M2.D.t)

5. Find action schedule
In the last step of the plan integration process, the operator must guar-
antee the existence of a schedule for all actions in each plan step of each
module. This means, that all actions occurring in a plan step must be
serialized in a way that the action executions do not overlap in time.
For example let Mi.N.actions = [(type:join peers:[Mj]
duration:4 t:10 t:30) (type:join peers:[Mk] duration:4 t:14
t:34)]
be the plan step of module Mi at node N . The time windows for the
two actions are shown in Figure B.3, the task of this step in the plan
integration process is to arrange these actions within their respective
time windows such that they do not overlap and that they take place in
the time interval given by cutting the action execution time intervals. A
valid schedule for the two actions is also shown in Figure B.3.
As one can see in Figure B.3, there are multiple schedules for the actions
exist (e.g. action 1 could as well be scheduled after action 2). However, the
time windows of the actions are not committed to a particular schedule
because this implies an unnecessary restriction imposed at planning time.
At planning time, it is sufficient to know that a schedule exists, concrete
commitments to a particular schedule are delayed until execution time
giving the participating modules a maximum degree of flexibility.

After these steps of the plan integration process have been successfully
performed, the output of the plan integration operator is a list of module
plans that satisfy the overlap condition mentioned before.

B.4 Plan Execution Simulation 259

B.3 Decision Functions

In order to decide whether to integrate a new module into an existing union
or to exchange a module in the union with an external module, the unions
must have decision functions that determine their optimal behavior.
The insertion cost c+ of a module m into an existing union U is

c+(U, m) =
∑

r∈U ′.routes∧|r.users|=1

ω(r) (B.1)

where U ′ is the is the union that emerges when the plan integration
operator presented in the previous section is applied to the plans of the
modules in U and module m. U ′.routes denote the location routes used by U ′

and |r.users| is the number of modules using location route r simultaneously.
Thus, the insertion cost are the additional costs that occur because of location
routes that are not already used by the union.
The deletion costs (or savings) c−, on the other hand, occur when a mod-

ule m is deleted from a union U and compute to

c−(U, m) =
∑

r∈m.routes∧|r.users|=1

ω(r) (B.2)

i.e. the savings are the costs of the routes of module m that are not shared
with other modules.
Thus, it pays to switch a module from an union U1 to another union U2

if the insertion costs for the module in U1 are less than the costs that occur
when the module is deleted from union U2, i.e. c+(U2, m) < c−(U1, m).

B.4 Plan Execution Simulation

The plan execution monitor (PEM) is the link between the planning unit
and the real world (or a simulation engine that simulates the real world).
The PEM controls the usage of location routes and the coupling activities of
the modules. To illustrate how plan execution monitoring works, recall the
plan of module M2 from the example in the previous section: [

(NodeId:C, t:9, t:21, actions:nil)

(NodeId:D, t:20, t:32, actions:[(type:join peers:[M1] duration:4 t:11

t:15)])

(NodeId:E, t:33, t:45, actions:[(type:split peers:[M1] duration:3 t:11

t:15)])

(NodeId:G, t:38, t:50, actions:nil)

]

When the module starts to execute this plan at time t = 9, it asks the
PEM whether the location route from C to D is available as it should be

260 B. Basic Problem Solving Capabilities of TCS Agents

because it was allocated at planning time. However, the route may not be
available at execution time due to external reasons, e.g. route blocking due
to mechanical failure of another module while using that particular route
and it is the task of the PEM to check whether or not the route is available.
If the module is allowed to use the route, it departs from node C. When
it arrives at node D, it issues a coupling request to the PEM, indicating
that it is waiting for module M1 to join with it. If module M1 has already
arrived at node D, the coupling action can start if M1 is not engaged in an
ongoing coupling activity with another module. If M1 has not arrived yet
or is currently engaged, the coupling action of M2 is stalled. If M1 does not
become available within the time interval specified in the join action of M2,
M2 departs fromD without coupling withM1 because otherwiseM2 will miss
its scheduled latest arrival time at the goal node. If the coupling activity can
be completed as it is scheduled, the two modules depart from D after the
coupling is finished. When they arrive at node E, the two modules inform
the PEM that they want to split and after completing the split action they
depart from node E for their respective goal nodes.
This example is, again, highly simplified. If more than two modules are

involved in join or split actions additional plan integrity constraints must be
satisfied. If, for example, three modules M1M2M3 are coupled in this order
and M2 must split from M1 and M3, an additional join action between M1

and M3 must be generated because M1 and M3 are supposed to remain cou-
pled. However, no additional join action is necessary if the original module
order is M2M1M3. The decision of whether to generate additional coupling
actions or not must be taken by the PEM upon plan execution time, depend-
ing on the actual coupling order of the modules.

C. Protoz Specification of the Contract-Net
Protocol

protocol ContractNet

% channel for messages between manager and bidder

channel

Manager(Announce Grant Reject)

Bidder(Bid NoBid Report)

end

% role manager; one instance is allowed within one

% protocol execution

role(1) Manager(agentList BidderList,

any Task, integer TimeoutValue)

% channel between the protocol and the applicationProcedures

% of the agent that has instantiated this role

%

% names and parameters of messages to applicationProc correspond

% with names and parameters of the procedures

%

% messages from applicationProc are named as the procedures with

% the word ’Result’ in front

channel

protocol(ChooseBid(any Bid1, any Bid2)

Inform(string Message)

GetResult)

applicationProc(ResultChooseBid)

end

%my states

states

WaitingForAnswer

WaitingForReport

end

declare

%my variables

message

BestBid % the currently best bid

Result

end

agent

Contractor

end

end

timeout

Timeout1 TimeoutValue startOnEnter in WaitingForAnswer end

Timeout2 TimeoutValue startOnEnter in WaitingForReport end

end

initialize to WaitingForAnswer

provided (length(BidderList) >= 1)

begin

send Announce(Task) to Bidder.BidderList % send the message to all the

% agents in the list

end

initialize to done

provided (length(BidderList) < 1)

% to less agents to announce to; there must be 2 or more

J. Lind: The MASSIVE Method, LNAI 1994, pp. 261-264, 2001.
 Springer-Verlag Berlin Heidelberg 2001

262 C. Protoz Specification of the Contract-Net Protocol

timeout
Timeout1 TimeoutValue startOnEnter in WaitingForAnswer end
Timeout2 TimeoutValue startOnEnter in WaitingForReport end

end

initialize to WaitingForAnswer
provided (length(BidderList) >= 1)
begin

send Announce(Task) to Bidder.BidderList % send the message to all the
% agents in the list

end

initialize to done
provided (length(BidderList) < 1)

% to less agents to announce to; there must be 2 or more
begin

applicationProc(Inform("bidderList must have at least 2 elements"))
end

trans

% transition 1

from WaitingForAnswer to same
when Bidder.BidderList % one of the agents in the list
sends Bid
provided (BestBid == nil)

% this the first bid
begin

remove(sender BidderList)
BestBid = currentMessage

end

% transition 2

from WaitingForAnswer WaitingForReport to same
when Bidder.BidderList sends Bid
provided ((BestBid \= nil) && (length(BidderList) > 1))

%there was a bid before
begin

remove(sender BidderList)
insert(CompareBids) % insert macro

end

% transition 3

from WaitingForAnswer to same
when Bidder.BidderList sends NoBid
provided (length(BidderList) > 1) % not the last reply

begin
remove(sender BidderList)

end

% transition 4

from WaitingForAnswer to WaitingForReport
when Bidder.BidderList sends Bid
provided (length(BidderList) == 1)

C. Protoz Specification of the Contract-Net Protocol 263

% last reply
begin

remove(sender BidderList)
insert(CompareBids)
Contractor = getSender(BestBid)
send Grant() to Bidder.Contractor

end

% transition 5

from WaitingForAnswer to WaitingForReport
when Bidder.BidderList sends NoBid
provided ((length(BidderList) == 1) &&

(BestBid \= nil))

% last reply
begin

remove(sender BidderList)
Contractor = getSender(BestBid)
send Grant() to Bidder.Contractor

end

% transition 6

from WaitingForAnswer to WaitingForReport
when system sends Timeout1
provided (BestBid \= nil) % there is a bid
begin

applicationProc(Inform("timeout in WaitingForAnswer, taking currently
best bid"))

Contractor = getSender(BestBid)
send Grant() to Bidder.Contractor

end

% transition 7

from WaitingForAnswer to done
when system sends Timeout1
provided (BestBid == nil) % there is no bid
begin

applicationProc(Inform("timeout in WaitingForAnswer and no bid received"))
end

% transition 8

from WaitingForReport to done
when Bidder.Contractor sends Report
begin

send GetResult(currentMessage.content) to applicationProc
end

% transition 9

from WaitingForReport to done
when system sends Timeout2
begin

applicationProc(Inform("timeout in WaitingForReport and no report received"))
end

% transition 10

from WaitingForReport to same
when Bidder.BidderList sends Bid
begin

send Exception("bid arrived to late") to Bidder.sender
end

264 C. Protoz Specification of the Contract-Net Protocol

% transition 11

from WaitingForAnswer to done
when Bidder.BidderList sends NoBid
provided ((length(BidderList) == 1) &&

(BestBid == nil))

% last reply but currently no bid
begin

applicationProc(Inform("no bid received"))
end

end

macro CompareBids
begin

Result = applicationProc(ChooseBid(BestBid.content currentMessage.content))

if (Result.content == BestBid.content) % the new bid is worse
then

send Reject() to Bidder.getSender(currentMessage)

elseif (Result.content == currentMessage.content) % the new bid is better
then

send Reject() to Bidder.getSender(BestBid)
BestBid = currentMessage

else % error
applicationProc(Inform("wrong result of method chooseBid"))
exit

end
end

end

% role bidder; multiple instances are allowed within
% one protocol execution

role(*) Bidder

%my methods

channel
protocol(ComputeBid

Execute
Inform(string Message))

applicationProc(ResultComputeBid ResultExecute)
end

%my states
states

Start ComputeBid WaitingForAnswer
Execute

end

declare

%my variables
any MyTask end
agent MyManager end

end

Bibliography

[Adami, 1998] Adami, C. (1998). Introduction to Artificial Life. California Insti-
tute of Technology.

[Adelson et al., 1984] Adelson, B., Littman, D., Ehrlich, K., Black, K., and

Soloway, E. (1984). Novice-expert differences in software design. In Shackel,

B., editor, Human-Computer Interaction INTERACT84, Amsterdam. North-
Holland.

[Advanced Software Technologies Inc., 1999] Advanced Soft-

ware Technologies Inc. (1999). Round trip engineering.
http://www.advancedsw.com/round.html.

[Anderson, 1983] Anderson, J. R. (1983). The Architecture of Cognition. Harvard
University Press, Cambridge, MA.

[Anderson, 1996] Anderson, J. R. (1996). Kognitive Psychologie. Spektrum
Akademischer Verlag, 2nd edition.

[André et al., 1999] André, E., M., K., Gebhard, P., Allen, S., and Rist, T.

(1999). Integrating models of personality and emotions into lifelike characters.
In Affect in Interactions Towards a New Generation of Interfaces.

[Avenhaus and Denzinger, 1993] Avenhaus, J. and Denzinger, J. (1993). Dis-
tributing equational theorem proving. In Proceedings of the RTA’93, number
690 in LNCS, Montreal.

[Axelrod, 1984] Axelrod, R. (1984). The Evolution of Cooperation. Basic Books.
[Bachem et al., 1992] Bachem, A., Hochstättler, W., and Malich, M. (1992).

Simulated Trading: A New Approach for Solving Vehicle Routing Problems.
Technical Report 92.125, Mathematisches Institut der Universität zu Köln.

[Bachem et al., 1993] Bachem, A., Hochstättler, W., and Malich, M. (1993).
The Simulated Trading Heuristic for Solving Vehicle Routing Problems. Tech-
nical Report 93.139, Mathematisches Institut der Universität zu Köln.

[Bahrdt, 1994] Bahrdt, H. P. (1994). Schlüsselbegriffe der Soziologie. C. H. Beck,
München.

[Balzert, 1998a] Balzert, H. (1998a). Lehrbuch der Software-Technik, volume II.
Spekrum Akademischer Verlag.

[Balzert, 1998b] Balzert, H. (1998b). Lehrbuch der Software-Technik, volume I.
Spekrum Akademischer Verlag.

[Barbucean and Fox, 1995] Barbucean, M. and Fox, M. S. (1995). The Archi-
tecture for an Agent Based Infrastructure for Agile Manufacturing. In Proceed-
ings of the Fithteenth International Joint Conference on Artificial Intelligence
(IJCAI-95)”,.

[Basili, 1989] Basili, V. R. (1989). The Experience Factory: Packaging Software
Experience. In Proceedings of the 14th International Conference on Software
Engineering. NASA Goddard Space Flight Center.

[Basili, 1993] Basili, V. R. (1993). Applying the Goal/Question/Metric Paradigm
in the Experience Factory. In Proceedings of the 10th Annual CSR Workshop.

266 Bibliography

[Basili et al., 1994] Basili, V. R., Caldiera, G., and Rombach, H. D. (1994).
Experience Factory. In Marciniak, J. J., editor, Encyclopedia of Software
Engineering, volume 1, pages 469–476. John Wiley & Sons.

[Basili and Turner, 1975] Basili, V. R. and Turner, A. J. (1975). Iterative En-
hacement: A Practical Technique for Software Development. In Proceedings
of the First National Conference on Software Engineering, pages 56–62. IEEE
Computer Society Press.

[Bauer et al., 1999] Bauer, B., Müller, J. P., and Odell, J. (1999). An ex-
tension of UML by protocols for multiagent interaction. Submission to the
ICMAS2000.

[Bayrische Landesregierung, 1996] Bayrische Landesregierung (1996). Bayern-
info. http://www.bayerninfo.de.

[Beck, 1999] Beck, K. (1999). eXtreme Programming eXplained: Embrace Change.
Addison-Wesley.

[Blum, 1992] Blum, B. I. (1992). Software Engineering – A Holistic View. Oxford
University Press.

[Boden, 1996] Boden, M. A., editor (1996). The Philosophy of Artificial Life.
Oxford readings in philosophy. Oxford University Press, Oxford.

[Boehm, 1988] Boehm, B. W. (1988). A Spiral Model of Software Development
and Enhancement. IEEE Computer, 21(5):61–72.

[Booch, 1994] Booch, G. (1994). Object-Oriented Analysis and Design With Ap-
plications. Addison-Wesley.

[Booch, 1996] Booch, G. (1996). Object Solutions: Managing the Object-Oriented
Project. Object-Orieneted Software Engineering. Addison-Wesley.

[Booch et al., 1999] Booch, G., Rumbaugh, J., and Jacobson, I. (1999). The
Unified Modeling Language User Guide. Addison Wesley.

[Bradshaw, 1997] Bradshaw, J. M., editor (1997). Software Agents. MIT Press.
[Brazier et al., 1997] Brazier, F., Dunin-Keplicz, B., Jennings, N., and

Treur, J. (1997). Desire: Modelling multi-agent systems in a compositional
formal framework. International Journal of Cooperative Information Systems,
6. Special Issue on Formal Methods in Cooperative Information Systems: Multi-
Agent Systems.

[Brazier et al., 1998] Brazier, F., Jonker, C., and Treur, J. (1998). Principles
of compositional multi-agent system development. In Cuena, J., editor, Pro-
ceedings of the IFIP’98 Conference on Information Technology and Knowledge
Systems. Chapman and Hall.

[Brazier et al., 1996] Brazier, F., van Eck, P., and Treur, J. (1996). De-
sign of a modelling framework for multi-agent systems. In Albrecht, R.

and Herre, H., editors, Trends in Theoretical Informatics, Schriftenreihe der
Österreichischen Computer Gesellschaft. R. Oldenbourg Verlag.

[Brooks, 1986] Brooks, Jr., F. P. (1986). No silver bullet. In Kugler, H.-

J., editor, Proceedings of the IFIP Tenth World Computing Conference, pages
1069–76, Elsevier Science.

[Brooks, 1995] Brooks, Jr, F. P. (1995). The Mythical Man–Month. Addison
Wesley.

[Brooks, 1991] Brooks, R. A. (1991). Intelligence without representation. Artifi-
cial Intelligence, 47:139–159.

[Bürckert et al., 1998] Bürckert, H.-J., Fischer, K., and Vierke, G. (1998).
Transportation scheduling with Holonic MAS, the TeleTruck approach. In Pro-
ceedings of the PAAM98.

[Burkhart, 1997] Burkhart, R. (1997). Schedules of activity in the swarm simu-
lation system. In roceedings of the 1997 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages & Applications (OOPSLA ’97).

Bibliography 267

[Burmeister, 1996] Burmeister, B. (1996). Models and methodology for agent-
oriented analysis and design. In Fischer, K., editor, Working Notes of the
KI’96 Workshop on Agent-Oriented Programming and Distributed Systems,
number D-96-06 in DFKI Documents. DFKI.

[Burmeister et al., 1995] Burmeister, B., Haddadi, A., and Sundermeyer, K.

(1995). Generic configurable cooperation protocols for multi-agent systems. In
Castelfranchi, C. and Müller, J.-P., editors, From Reaction to Cognition
— 5th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW’93), volume 957 of LNAI, pages 157–171. Springer-Verlag.

[Burt, 1998] Burt, A. (1998). Emotionally Intelligent Agents: The Outline of a
Resource-Oriented Approach. In Proceedings of the 1998 AAAI Fall Symposium
Emotional and Intelligent: The Tangled Knot of Cognition.

[Bussmann and Müller, 1993] Bussmann, S. and Müller, H. J. (1993). A Com-
munication Structure for Cooperating Agents. Computers and AI, I.

[Cammarata et al., 1983] Cammarata, S., McArthur, D., and Steeb, R.

(1983). Strategies of cooperation in distributed problem solving. In Proceedings
of the Eighth International Joint Conference on Artificial Intelligence (IJCAI-
83).

[Carley, 1999] Carley, K. M. (1999). Computational organizational theory. In
Multiagent Systems - A Modern Approach to Distributed Artificial Intelligence.
MIT Press.

[Carroll and Rosson, 1985] Carroll, J. M. and Rosson, M. B. (1985). Usability
specifications as a tool in iterative development. In Hartson, H. R., editor,
Advances in Human-Computer Interaction, volume 1. Norwwod.

[Carroué, 1997] Carroué, L. (1997). La ruinease maladie du� tout-routier�—
une europe des transports menacée d’embolie. Le Monde Diplomatique, pages
18–19.

[Chase and Simon, 1973] Chase, G. W. and Simon, H. A. (1973). The minds eye
in chess. In Chase, W. G., editor, Visual Information Processing. Academic
Press, New York.

[Ciancarini and Wooldridge, 2000] Ciancarini, P. and Wooldridge, M., editors
(2000). Proceedings of the First International Workshop on ”Agent-Oriented
Software Engineering” held at the International Conference on Software Engi-
neering (ICSE2000), Limerick, Ireland. Springer.

[Clocksin and Mellish, 1994] Clocksin, W. F. and Mellish, C. S. (1994). Pro-
gramming in Prolog. Springer Verlag.

[Collins and Ndumu, 1998] Collins, J. and Ndumu, D. (1998). The ZEUS Role
Modelling Guide. Technical report, BT, Adastral Park, Martlesham Heath.

[Conte et al., 1996] Conte, S. D., Dunsmore, H. E., and Chen, V. Y. (1996).
Software Engineering Metrics and Models. The Benjamin/Cummings Publish-
ing Company.

[Cook, 1979] Cook, W. A. (1979). Case Grammar: Development of the Matrix
Model. PhD thesis, Georgetown University, Washington.

[Cox and Gehani, 1989] Cox, I. J. and Gehani, N. H. (1989). Exception Han-
dling in Robotics. IEEE Computing, 22(3).

[Curtis, 1989] Curtis, B. (1989). Five paradigms in the psychology of program-
ming. In Helander, M., editor, Handbook of Human-Computer Interaction.
Elsevier (North-Holland), Amsterdam.

[Dahl et al., 1972] Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. R. (1972).
Strcutured Programming. Academic Press, London.

[Defense Advanced Research Projects Agency, 1981] Defense Advanced Re-

search Projects Agency (1981). Transmission Control Protocol.

268 Bibliography

[DeMarco, 1978] DeMarco, T. (1978). Structured Analysis and System Design.
Englewood Cliffs:Yourdon Press.

[Denzinger, 1993] Denzinger, J. (1993). Teamwork: Eine Methode zum Entwurf
verteilter, wissensbasierter Theorembeweiser. PhD thesis, Universität Kaiser-
slautern.

[Denzinger, 1994] Denzinger, J. (1994). The teamwork approach to distributed
search. Technical report, University of Kaiserslautern.

[Denzinger and Lind, 1996] Denzinger, J. and Lind, J. (1996). TWlib - a library
for distributed search applications. In Proceedings of the ICS96-AI, pages 101–
108, Kaohsiung.

[Desmond and Moore, 1994] Desmond, A. and Moore, J. (1994). Darwin.
Rowolt.

[Détienne, 1990] Détienne, F. (1990). Expert programmers and programming
languages. In Psychology of Programming. Academic Press Ltd., London.

[Doke and Hardgrave, 1998] Doke, E. R. and Hardgrave, B. C. (1998). An
Introduction to Object Cobol. John Wiley & Sons.

[Dröschel and Wiemers, 1999] Dröschel, W. and Wiemers, M. (1999). Das V-
Modell 97. Oldenbourg, München.

[Dyer, 1992] Dyer, M. (1992). The Cleanroom Approach to Quality Software De-
velopment. Wiley and Sons.

[Edelman, 1987] Edelman, G. M. (1987). Neural Darwinism : the Theory of Neu-
ronal Group Selection. Basic Books.

[Engelmore and Morgan, 1988] Engelmore, R. and Morgan, T., editors (1988).
Blackboard Systems. Addison-Wesley.

[Epstein and Axtell, 1996] Epstein, J. M. and Axtell, R. (1996). Growing Ar-
tificial Societies : Social Science from the Bottom Up (Complex Adaptive Sys-
tems). Brookings Institution Press.

[EURESCOM, 1999] EURESCOM (1999). MESSAGE: Methodology for En-
gineering Systems of Software AGEnts. EURESCOM – European
Institute for Research and Strategic Studies in Telecommunications.
http://www.eurescom.de/Public/Projects/p900-series/P907/P907.htm.

[Fabel, 1996] Fabel, P. (1996). Increasing the flexibility of freight traffic - using
modular train units as an example. In Proceedings of the World Congress of
Railway Research (WCRR), Colorado Springs; USA.

[Finin and Fritzson, 1994] Finin, T. and Fritzson, R. (1994). KQML — a lan-
guage and protocol for knowledge and information exchange. In Proceedings of
the 13th International Distributed Artificial Intelligence Workshop, pages 127–
136, Seattle, WA, USA.

[Finkelstein and Fuks, 1989] Finkelstein, A. and Fuks, S. (1989). Multi-party
specification. In Proceedings of the 5th International Workshop on Software
Specifications and Design.

[FIPA, 1996] FIPA (1996). AgenTalk Reference Manual. NTT Communication Sci-
ence Laboratories and Ishida Laboratory, Department of Information Science,
Kyoto University.

[FIPA, 1997] FIPA (1997). Fipa ’97 specification parts 1–7, version 1.0. The
Foundation for Intelligent Physical Agents.

[FIPA, 1998] FIPA (1998). Fipa ’98 specification parts 1–13, version 1.0. The
Foundation for Intelligent Physical Agents.

[Fischer, 1993] Fischer, K. (1993). Rollenverteilung unter gleichberechtigten
agenten. In Verteilte Künstliche Intelligenz. BI Wissenschaftsverlag.

[Fischer et al., 1993] Fischer, K., Kuhn, N., Müller, H. J., Müller, J. P.,

and Pischel, M. (1993). Sophisticated and Distributed: The Transportation
Domain. In Proceedings of MAAMAW-93, Neuchatel, CH.

Bibliography 269

[Fischer et al., 1994] Fischer, K., Kuhn, N., and Müller, J. P. (1994). Dis-
tributed, knowledge-based, reactive scheduling in the transportation domain.
In Proceedings of the Tenth IEEE Conference on Artificial Intelligence and Ap-
plications, pages 47–53, San Antonio, Texas.

[Fischer and Müller, 1995] Fischer, K. and Müller, H. J. (1995). Coopera-
tive problem solving in the transportation domain. In Derigs, U., editor,
Proceedings of the International Conference on Operations Research (OR’94).
Springer-Verlag.

[Floyd, 1983] Floyd, C. (1983). A Systematic Look at Prototyping. In Budde,

R., Kuhlenkamp, K., Mathiassen, L., and Züllinghoven, H., editors, Ap-
proaches to Prototyping.

[Foner, 1993] Foner, L. N. (1993). What’s an Agent, Anyway? A Sociological
Case Study. Agents Group, MIT Media Lab. Agents Memo 93-01.

[Fowler, 1999] Fowler, M. (1999). Refactoring – Improving the Design of Exists-
ing Code. Object Technology Series. Addison-Wesley.

[Fox, 1981] Fox, M. (1981). An organizational view of distributed systems. IEEE
Trans. on Man, Systems and Cybernetics, 11(1):70–80.

[France and Rumpe, 1999] France, R. and Rumpe, B., editors (1999). UML99 -
The Unified Modelling Language - Beyond The Standard, number 1723 in LNCS.
Springer.

[Franklin, 1997] Franklin, S. (1997). Artificial Minds. MIT Press.
[Franklin and Graesser, 1997] Franklin, S. and Graesser, A. (1997). Is it an

agent, or just a program?: A taxonomy for autonomous agents. In Proceed-
ings of the Third International Workshop on Agent Theories, Architectures,
and Languages.

[Fulbright and Stephens, 1994] Fulbright, R. D. and Stephens, L. M. (1994).
Classification of multiagent systems. Technical Report ECE-LMS-94-06, Uni-
versity of South Carolina, Columbia, SC 29208.

[Funk et al., 1998] Funk, P., Gerber, C., Lind, J., and Schillo, M. (1998).
SIF: An agent-based simulation toolbox using the EMS paradigm. In Proceed-
ings of the 3rd International Congress of the Federation of EUROpean SIMula-
tion Societies (EuroSim).

[Funk and Lind, 1997] Funk, P. and Lind, J. (1997). What is a friendly agent?
In Workshop Notes of the AAAI Fall Symposium 1997 on Socially Intelligent
Agents.

[Galitz, 1997] Galitz, W. O. (1997). The Essential Guide to User Interface De-
sign. Wiley Computer Publishing.

[Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.

(1994). Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley.

[Garlan and Shaw, 1993] Garlan, D. and Shaw, M. (1993). An introduction to
software architecture. In Ambriola, V. and Tortora, G., editors, Advances
in Software Engineering and Knowledge Engineering, volume I. World Scientific
Publishing.

[Garlan and Shaw, 1994] Garlan, D. and Shaw, M. (1994). An introduction to
software architecture. Technical Report CMU-CS-94-166, Software Engineering
Institute, Carnegie Mellon University.

[Gasser, 1995] Gasser, L. (1995). Introduction to multi-agent systems. InWorking
Notes of Tutorial A at ICMAS95, San Francisco, CA.

[Genesereth and Nilsson, 1987] Genesereth, M. and Nilsson, N. (1987). Logical
Foundations of Artificial Intelligence. Morgan Kaufman Publishers, Inc.

[Genesereth and Fikes, 1992] Genesereth, M. R. and Fikes, R. E. (1992).
Knowlege interchange format, version 3.0, reference manual. Technical Report

270 Bibliography

Logic-92-1, Logic Group, Computer Science Department, University of Stan-
ford.

[Georgeff, 1983] Georgeff, M. P. (1983). Communication and interaction in
multi-agent planning. In Proceedings of the Third National Conference on Ar-
tificial Intelligence (AAAI-83), pages 125 – 129.

[Gerber, 1997] Gerber, C. (1997). An agent society is more then a collection
of agents. In Workshop Notes of the AAAI Fall Symposium 1997 on Socially
Intelligent Agents.

[Gerber, 2000] Gerber, C. (2000). Self-Adaptation and Scalability in Multi-Agent
Societies. PhD thesis, University of the Saarland.

[Gerber et al., 1999a] Gerber, C., Siekmann, J., and Vierke, G. (1999a).
Holonic multi-agent systems. Technical Report TR-99-01, DFKI.

[Gerber et al., 1999b] Gerber, C., Steiner, D., and Bauer, B. (1999b). Re-
source adaptation for a scalable agent society in the MECCA domain. In Intel-
ligent Software Agents for Communication Networks. Springer.

[Goodwin, 1993] Goodwin, R. (1993). Formalizing properties of agents. Tech-
nical Report CMU–CS–93–159, School of Computer Science, Carnegie-Mellon
Universit, Pittsburgh, PA.

[Graham, 1995] Graham, P. (1995). ANSI Common LISP. Prentice Hall.
[Green, 1990] Green, T. R. G. (1990). Programming languages as information

structures. In Psychology of Programming. Academic Press Ltd., London.
[Grenno and Simon, 1988] Grenno, J. G. and Simon, H. A. (1988). Problem

solving and reasoning. In Atkinson, R. C., Herrnstein, R. J., Lindzey,

G., and Luce, R. D., editors, Stevens Handbook of Experimental Psychology,
volume 2. Wiley.

[Guindon et al., 1987] Guindon, R., Krasner, H., and Curtis, B. (1987).
Breakdowns and processes during the early activities of software design by pro-
fessionals. In Olson, G., S.Sheppard, and Soloway, E., editors, Empirical
Studies of Programmers: Second Workshop, Norwood, NJ. Ablex.

[Hall, 1999] Hall, R. (1999). Agent-based Software Configuration and Deployment.
PhD thesis, University of Colorado.

[Hayes-Roth and Hayes-Roth, 1979] Hayes-Roth, B. and Hayes-Roth, F.

(1979). A cognitive model of planning. Cognitive Science, 3:275–310.
[Heise, 1992] Heise, D. (1992). Computer assistance in qualitative sociology. Social

Science Computer Review, 10:531–543.
[Hennessy and Patterson, 1990] Hennessy, J. L. and Patterson, D. A. (1990).

Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publish-
ers Inc.

[Hiebeler, 1994] Hiebeler, D. (1994). The swarm simulation system and
individual-based modeling. In Proceedings of the Intenational Conference on
Advanced Technology for Natural Resource Management.

[Hoc, 1988] Hoc, J.-M. (1988). Towards effective computer aids to planning in
computer programming. theoretical concern and empirical evidence drawn from
assessement of a prototype. In van de Veer, G. C., Green, T. R. G., Hoc,

J.-M., and Murray, D., editors,Working with Computers: Theory versus Out-
comes. Academic Press, London.

[Holzmann, 1991] Holzmann, G. J. (1991). Design and Validation of Computer
Protocols. Prentice Hall.

[Horn and Reinke, 1999] Horn, E. and Reinke, T. (1999). Musterarchitekturen
und entwicklungsmethoden für Multiagentsysteme. KI.

[Houdek et al., 1998] Houdek, F., Schneider, K., and Wieser, E. (1998). Es-
tablishing Experience Factories at Daimler-Benz: An Experience Report. In
Proceedings of the 20th International Conference on Software Engineering.

Bibliography 271

[Huhns and Singh, 1998] Huhns, M. N. and Singh, M. P., editors (1998). Read-
ings in Agents. Morgan Kaufmann, San Francisco, California.

[Iglesias et al., 1998] Iglesias, C., Garrijo, M., and Gonzalez, J. (1998). A
Survey of Agent-Oriented Methodologies. In Müller, J. P., Singh, M. P., and

Rao, A. S., editors, Intelligent Agents V — Proceedings of the 1998 Workshop
on Agent Theories, Architectures, and Languages (ATAL-98), volume 1555 of
LNAI.

[Iglesias et al., 1997] Iglesias, C., Garrijo, M., Gonzalez, J., and Velasco,

J. R. (1997). Analysis and design of multiagent systems using MAS-
CommonKADS. In Singh, M. P., Rao, A., and Wooldridge, M. J., editors,
Intelligent Agents IV: Agent Theories, Architectures and Languages, number
1365 in LNAI.

[Intelligent Reasoning Systems, 2000] Intelligent Reasoning Systems (2000).
Jam agent architecture. http://members.home.net/marcush/IRS/.

[Ishikawa, 1985] Ishikawa, K. (1985). What is Total Quality Control? The
Japanese Way. Englewood/Cliffs, New York.

[Jacobson, 1992] Jacobson, I. (1992). Object-oriented software engineering : a use
case driven approach. ACM Press/Addison-Wesley.

[Jalote, 1997] Jalote, P. (1997). An Integrated Approach to Software Engineering.
Spinger, 2nd edition.

[Jennings, 1999] Jennings, N. R. (1999). Agent-Oriented Software Engineering. In
Iman, I., Kodratoff, Y., El-Dessouki, A., and Ali, M., editors, Proceedings
of the 12th International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems, number 1611 in LNAI. Springer.

[Jennings et al., 1998] Jennings, N. R., Sycara, K. P., and Wooldridge, M.

(1998). A roadmap of agent research and development. Journal of Autonomous
Agents and Multi-Agent Systems, 1(1):7–36.

[Jennings and Wooldridge, 1998] Jennings, N. R. and Wooldridge, M. J., ed-
itors (1998). Agent Technology : Foundations, Applications, and Markets.
Springer, Berlin.

[Johnson-Laird, 1983] Johnson-Laird, P. N. (1983). Mental Models. Cmabridge
University Press, London.

[Jung, 1999] Jung, C. G. (1999). Theory and Pratice of Hybrid Agents. PhD
thesis, Universität des Saarlandes.

[Jung et al., 1999] Jung, C. G., Lind, J., Gerber, C., Schillo, M., Funk, P.,

and Burt, A. (1999). An architecture for co-habited virtual worlds. In Lan-

dauer, C. and Bellman, K. L., editors, Virtual Worlds and and Simulation
Conference (VWSIM’99), Simulation Series. The Society for Computer Simu-
lation International.

[Kant and Newell, 1984] Kant, E. and Newell, A. (1984). Problem solving tech-
niques for the design of algorithms. Human-Computer Interactions, 28:97–118.

[Kendall, 1998a] Kendall, E. A. (1998a). Agent Analysis and Design with Role
Models. Technical report, British Telecom. Volume I: Overview.

[Kendall, 1998b] Kendall, E. A. (1998b). Agent Analysis and Design with Role
Models. Technical report, British Telecom. Volume II: Role Models for Agent
Enhanced Workflow and Business Process Management.

[Kenworthy, 1997] Kenworthy, E. (1997). Use case modelling.
http://www.zoo.co.uk/∼z0001039/PracGuides/pg use cases.htm.

[Kephart et al., 1989] Kephart, J. O., Hogg, T., and Huberman, B. A. (1989).
Dynamics of Computational Ecosystems: Implications for DAI. In Gasser,

L. and Huhns, H. M., editors, Distributed Artificial Intelligence, Volume II.
Morgan Kaufmann Publishers, Inc., San Mateo, CA.

272 Bibliography

[Kernighan and Pike, 1999] Kernighan, B. W. and Pike, R. (1999). The Prac-
tice of Programming. Addison Wesley Publishing Company.

[Kernighan and Plauger, 1974] Kernighan, B. W. and Plauger, P. J. (1974).
The Elements of Programming Style. McGraw-Hill, London.

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,

Lopes, C. V., Loingtier, J.-M., and Irvin, J. (1997). Aspect-Oriented Pro-
gramming. In Proceddings of the European Conference on Object-Oriented Pro-
gramming (ECOOP), number 1241 in LNCS. Springer-Verlag.

[Kinny and Georgeff, 1996] Kinny, D. and Georgeff, M. (1996). Modelling and
design of multi-agent systems. In J. P. Müller, M. J. W. and Jennings,

N. R., editors, Intelligent Agents III — Proceedings of the Third International
Workshop on Agent Theories, Architectures, and Languages (ATAL-96), num-
ber 1193 in LNCS, pages 1–20. Springer-Verlag.

[Knecht, 1996] Knecht, A. (1996). Gecco - Toolkit zur direkten Manipulation
grafischer Objekte. Master’s thesis, University of Kaiserslautern.

[Knuth, 1992] Knuth, D. E. (1992). Literate Programming. Chicago of University
Press.

[Kögl, 1995] Kögl, C. (1995). Verteilte Berechnung von Gröbnerbasen unter
Verwendung des Teamwork-Paradigmas. Master’s thesis, Universität Kaiser-
slautern.

[Kolb, 1995] Kolb, M. (1995). A cooperation language. In Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS’95), pages 233–238.

[Kolodner, 1993] Kolodner, J. (1993). Case Based Reasoning. Morgan Kauf-
mann.

[Kotonya and Sommerville, 1992] Kotonya, G. and Sommerville, I. (1992).
Viewpoints for requirements definition. BCS/IEE Software Engineering Jour-
nal, 7(6).

[Kowalski, 1979] Kowalski, R. (1979). Logic for Problem Solving. North Holland,
Amsterdam.

[Kracke et al., 1995] Kracke, R., Siegmann, J., Voges, W., Boecker, J., and

Zirkler, B. (1995). Systemgestaltung des Schienengüterverkehrs unter Einsatz
der Strategie des Train-Coupling and -Sharing. Technical report, Universität
Hannover. Studie im Auftrag der DB AG.

[Kronenburg, 1995] Kronenburg, M. (1995). Hierarchisierung der Teamwork-
Methode mittels Zerlegungsplanung. Master’s thesis, Universität Kaiser-
slautern.

[Kuhn et al., 1994] Kuhn, N., Müller, H. J., and Müller, J. P. (1994).
Simulating cooperative transportation companies. In Biethahn, J., Hum-

meltenberg, W., Schmidt, B., and Witte, T., editors, Simulation als be-
triebliche Entscheidungshilfe, chapter 18, pages 263–264. Vieweg Verlag, Braun-
schweig/Wiesbaden.

[Kuhn, 1975] Kuhn, T. S. (1975). The structure of scientific revolutions. Univ. of
Chicago Press, 2nd edition.

[Kulak and Guiney, 2000] Kulak, D. and Guiney, E. (2000). Use Cases – Re-
quirements in Context. Addison-Wesley.

[Künzel, 1997] Künzel, K. (1997). Eine graphische Benutzerschnittstelle und
Analyseumgebung für Systeme basierend auf dem Teamwork-Konzept. Mas-
ter’s thesis, Universität Kaiserslautern.

[Kupries and Noseleit, 1999] Kupries, M. and Noseleit, C. (1999). Software
architecture type-based interagent connections. In Autonomous Agents ’99,
Seattle.

[Lander, 1997] Lander, S. E. (1997). Issues in Multiagent Design Systems. IEEE
Expert.

Bibliography 273

[Lang and Stuart, 1998] Lang, J. and Stuart, D. B. (1998). A study of the
applicability of existing exception-handling techniques to component-based real-
time software technology. ACM Transactions on Programming Languages and
Systems, 20(2).

[Langton, 1989] Langton, C., editor (1989). Artificial Life, Redwood City, Calif.
Addison-Wesley.

[Lawler and Woods, 1966] Lawler, E. L. and Woods, D. E. (1966). Branch-
and-Bound Methods: A survey. Operations Research, 14(4):699–719.

[Lee et al., 1998] Lee, L., Nwana, H., Ndumu, D., and De Wilde, P. (1998).
The stability, scalability and performance of multi-agent systems. BT Technol-
ogy Journal, 16(3).

[Leopold, 1995] Leopold, T. (1995). Verteilte Lösung des Travelling-Salesman-
Problems durch TEAMWORK. Master’s thesis, Universität Kaiserslautern.

[Lichter et al., 1994] Lichter, H., Schneider-Hufschmidt, M., and

Züllighoven, H. (1994). Prototyping in industrial software projects –
bridging the gap between theory and practice. IEEE Transactions on Software
Engineering, 20(11):825–832.

[Lind, 1992] Lind, J. (1992). Sicheres Broadcasting für DISCOUNT. Projektar-
beit, Universität Kaiserslautern.

[Lind, 1996a] Lind, J. (1996a). TWLib – A Generic Library for teamwork Ap-
plications. Master’s thesis, University of Kaiserslautern.

[Lind, 1996b] Lind, J. (1996b). TWLib – Reference Manual. University of Kaiser-
slautern.

[Lind, 1998] Lind, J. (1998). The EMS Model. Technical Report TM-98-09, DFKI,
Stuhlsatzenhausweg 3, D-66123 Saarbrücken.

[Lind, 1999a] Lind, J. (1999a). A Process Model for the Design of Multi-Agent
Systems. Technical Report TM-99-03, DFKI, Stuhlsatzenhausweg 3, D-66123
Saarbrücken.

[Lind, 1999b] Lind, J. (1999b). A Review of Multiagent Systems Development
Methods. Technical report, British Telecom, Adastral Park Labs, Martlesham
Heath, Suffolk.

[Lind, 2000a] Lind, J. (2000a). A development method for multiagent systems. In
Cybernetics and Systems: Proceedings of the 15th European Meeting on Cyber-
netics and Systems Research, Symposium ”From Agent Theory to Agent Imple-
mentation”.

[Lind, 2000b] Lind, J. (2000b). Issues in agent-oriented software engineering. In
Proceeedings of the First International Workshop on Agent-Oriented Software
Engineering (AOSE-2000) held at the 22nd International Conference on Soft-
ware Engineering, Limerick, Ireland.

[Lind, 2000c] Lind, J. (2000c). The massive development method for multiagent
systems. In Proceedings of the Fifth International Conference on the Practical
Application of Intelligent Agents and Multi-Agents, Manchester, UK.

[Lind, 2000d] Lind, J. (2000d). Massive: Software Engineering for Multiagent
Systems. PhD thesis, University of the Saarland.

[Lind, 2000e] Lind, J. (2000e). Specifying Agent Interaction Protocols with UML
Activity Diagrams. Technical Report TM-00-01, DFKI.

[Lind and Böcker, 1999] Lind, J. and Böcker, J. (1999). Optimising the Train
Coupling and -Sharing system with a multi-agent approach. In Proceedings of
the 11th Mini-EURO Conference on AI in Transportation Systems and Science,
Helsinki.

[Lind et al., 1999a] Lind, J., Böcker, J., and Zirkler, B. (1999a). Optimising
the Operation Management with a Multi-Agent Approach - Using TCS as an

274 Bibliography

Example. In Proceedings of the World Congress on Railway Research (WCRR),
Tokyo.

[Lind and Fischer, 1998] Lind, J. and Fischer, K. (1998). Transportation
Scheduling and Simulation in a Railroad Scenario: A Multi-Agent Ap-
proach. Technical Report TM-98-05, DFKI, Stuhlsatzenhausweg 3, D-66123
Saarbrücken.

[Lind and Fischer, 1999] Lind, J. and Fischer, K. (1999). Transportation
Scheduling and Simulation in a Railroad Scenario: A Multi-Agent Approach.
In Kopfer, H. and Bierwirth, C., editors, Logistik Management. Spinger.

[Lind et al., 1999b] Lind, J., Fischer, K., Böcker, J., and Zirkler, B. (1999b).
Transportation Scheduling and Simulation in a Railroad Scenario: A Multi-
Agent Approach. In Proceedings of the Fourth International Conference on
the Practical Application of Intelligent Agents and Multi-Agents (PAAM99),
London.

[Lind et al., 2000] Lind, J., Gerber, C., Funk, P., Schillo, M., Burt, A., and

Jung, C. (2000). SIF-VW: Eine integrierte Systemarchitektur für Agenten
und Benutzer in virtuellen Welten. KI – Zeitschrift Künstliche Intelligenz, 2.
Schwerpunktthema ”Intelligente Virtuelle Umgebungen”.

[Lind et al., 1999c] Lind, J., Jung, C. G., and Gerber, C. (1999c). Learning
and Adaptivity in Intelligent Real-Time Systems. In Proceedings of the Third
International Conference on Autonomous Agents (Agents’99).

[Linger and Trammell, 1996] Linger, R. C. and Trammell, C. J. (1996). Clean-
room software engineering reference model version 1.0. Technical Report
CMU/SEI-96-TR-022, Carnegie Mellon University.

[MacGregor and Bates, 1987] MacGregor, R. and Bates, R. (1987). The
LOOM Knowledge Representation Language. Technical Report ISI/RS-87-188,
University of Southern California.

[Mayfield et al., 1995] Mayfield, J., Labrou, Y., and Finin, T. (1995). Eval-
uating KQML as an agent communication language. In Wooldridge, M.,

Müller, J. P., and Tambe, M., editors, Intelligent Agents — Proceedings of
the 1995 Workshop on Agent Theories, Architectures, and Languages (ATAL-
95), volume 1037 of LNAI, pages 347–360. Springer-Verlag.

[McCarthy, 1979] McCarthy, J. (1979). Ascribing mental qualities to machines.
In Ringle, M., editor, Philosophical Aspects in Artificial Intelligence. Harvester
Press.

[McConnell, 1993] McConnell, S. (1993). Code Complete: A Practical Handbook
of Software Construction. Microsoft Press.

[McKeithen et al., 1987] McKeithen, K. B., Reitman, J. S., Rueter, H. H.,

and Hirtle, S. C. (1987). Knowledge organization and skill differences in
computer programmers. Canadian Journal of Psychology, 13.

[McNealy, 1996] McNealy, S. (1996). Scott says... kick butt and have fun”. Sun
Microsystems. http://www.sun.com/960601/cover/.

[Mehlhorn and Näher, 1999] Mehlhorn, K. and Näher, S. (1999). The LEDA
Platform of Combinatorial and Geometric Computing. Cambridge University
Press.

[Merriam-Webster, 2000] Merriam-Webster (2000). Wwwebster dictionary.
http://www.m-w.com.

[Microsoft Corporation, 2000] Microsoft Corporation (2000). Visual c++.
http://msdn.microsoft.com/visualc/.

[Miller, 1956] Miller, G. A. (1956). The magical number seven, plus or minus two:
some limits on our capacity of information processing. Psychological Review,
63:237–260.

Bibliography 275

[Mills et al., 1987] Mills, H., Dyer, M., and Linger, R. (1987). Cleanroom
software engineering. IEEE Software, pages 19–24.

[Minar et al., 1996] Minar, N., Burkhart, R., Langton, C., and Askenazi,

M. (1996). The swarm simulation system: A toolkit for building multi-agent
simulations. Technical Report 96-06-042, Santa Fe Institute.

[Mullender, 1993] Mullender, S. (1993). Distributed Systems. ACM Press.
[Müller, 1996a] Müller, J. P. (1996a). Control Architectures for Autonomous

and Interactin Agents: A Survey. In Cavedon, L., Rao, A., and Wobcke,

W., editors, Intelligent Agent Systems: Theoratical and Practical Issues, number
1209 in LNAI.

[Müller, 1996b] Müller, J. P. (1996b). The Design of Intelligent Agents: A Lay-
ered Approach, volume 1177 of Lecture Notes in Artificial Intelligence. Springer-
Verlag.

[Müller, 1998] Müller, J. P. (1998). The Right Agent (Architecture) to do the
Right Thing. In Müller, J. P., Singh, M. P., and Rao, A. S., editors,
Intelligent Agents V — Proceedings of the 1998 Workshop on Agent Theories,
Architectures, and Languages (ATAL-98), volume 1555 of LNAI.

[Naur and Randell, 1969] Naur, P. and Randell, B., editors (1969). Software
Engineering. Report on a Conference sponsored by the NATO Science Commi-
tee, Garmisch, Germany, 7th to 11th October 1968. NATO, Scientific Affairs
Division.

[Ndumu et al., 1999] Ndumu, D. T., Nwana, H. S., Lee, L. C., and Collins,

J. C. (1999). Visualising and debugging distributed multi-agent systems. In
Proceedings of the 3rd International Conference on Autonomous Agents.

[Neches et al., 1991] Neches, R., Fikes, R., Finin, T., Gruber, R., Patil, R.,

Senator, T., and Swartout, W. (1991). Eanbling Technology for Knowledge
Sharing. Ai magazine, 12(3):36–56.

[Noda, 1995] Noda, I. (1995). Soccer Server: A Simulator of Robocup. In Proc.
of AI symposium 1995. Japanese Society for Artificial Intelligence.

[Nwana et al., 1999] Nwana, H. S., Ndumu, D. T., Lee, L. C., and Collins,

J. C. (1999). ZEUS: A tool-kit for building distributed multi-agent systems.
Applied Artifical Intelligence Journal, 13(1):129–186.

[Object Management Group, 1999] Object Management Group (1999).
CORBA: Common Object Request Broker Architecture and Specification,
revision 2.3.

[Odgers et al., 1999] Odgers, B., Shepherdson, J., and Thompson, S. (1999).
Distributed workflow co-ordination by proactive software agents. In Proceedings
of the IJCAI-99 Workshop on Intelligent Workflow and Process Management.

[O’Hare and Jennings, 1996] O’Hare, G. M. P. and Jennings, N. R., editors
(1996). Foundations of Distributed Artificial Intelligence. Wiley & Sons, New
York.

[OMG and FIPA, 1999] OMG and FIPA (1999). Agent working group.
http://www.objs.com/isig/wg-agents06-minutes.html.

[Opdyke, 1992] Opdyke, W. F. (1992). Refactoring Object-Oriented Frameworks.
PhD thesis, University of Illinois, Urbana-Champaign.

[Ormerod, 1990] Ormerod, T. (1990). Human cognition and programming. In
Psychology of Programming. Academic Press Ltd., London.

[Ousterhout, 1994] Ousterhout, J. K. (1994). Tcl and the Tk Toolkit. Addison-
Wesley Professional Computing.

[Parnas, 1996] Parnas, D. (1996). Why Software Jewels are Rare. IEEE Com-
puter, 29(2).

276 Bibliography

[Parnas and Clements, 1986] Parnas, D. and Clements, P. (1986). A Rational
Design Process: How and Why to Fake It. IEEE Transactions on Software
Engineering, SE-12(2).

[Parunak, 1995] Parunak, H. V. (1995). Case Grammar: A Linguistic Tool for
Engineering Agent-Based Systems. Technical report, Industrial Technology In-
stitute.

[Parunak, 1997] Parunak, H. V. (1997). ’Go to the Ant’: Engineering Principles
from Natural Agent Systems. Annals of Operations Research, 75:69–101.

[Parunak, 1999a] Parunak, H. V. (1999a). Blue-Collar Agents: Keynote of the
PAAM99 conference. http://www.erim.org/∼van/Presentations.

[Parunak, 1999b] Parunak, H. V. (1999b). Multiagent Systems - A Modern Ap-
proach to Distributed Artificial Intelligence, chapter 9. MIT Press.

[Parunak et al., 1997] Parunak, H. V., Sauter, J., and Clarke, S. (1997).
Towards the specification and design of industrial synthetic ecosystems. In
Proceedings of the 1997 Workshop on Agent Theories, Architectures, and Lan-
guages.

[Pennington and Grabowski, 1990] Pennington, N. and Grabowski, B. (1990).
The tasks of programming. In Psychology of Programming. Academic Press
Ltd., London.

[Pernici, 1990] Pernici, B. (1990). Object with Roles. In Proceedings of the
ACM/IEEE International Conference on Office Information Systems, Boston.

[Petre, 1990] Petre, M. (1990). Expert programmers and programming languages.
In Psychology of Programming. Academic Press Ltd., London.

[Petre and Winder, 1988] Petre, M. and Winder, R. L. (1988). Issues governing
the suitability of programming languages for programming tasks. In People and
Computers IV: Proceedings of HCI’88, Cambridge. Cambrdige University Press.

[Petrie et al., 1998] Petrie, C., Goldmann, S., and Raquet, A. (1998). Agent-
Based Project Management. In Artificial Intelligence Today, number 1500 in
LNAI. Springer.

[Philipps, 1998] Philipps, S. (1998). Entwurf und Implementierung eines Systems
zur Definition und Ausführung von Protokollen für Multi-Agentensystemen.
Master’s thesis, Fachhochschule Trier.

[Philipps and Lind, 1999] Philipps, S. and Lind, J. (1999). Ein System zur Defi-
nition und Ausführung von Protokollen für Multi-Agentensystemen. Technical
Report RR-99-01, DFKI.

[Pitz, 1993] Pitz, W. (1993). Realisierung eines Systems zum verteilten, wissens-
basierten Gleichheitsbeweisen mit Hilfe der Teamwork-Methode (in german).
Master’s thesis, Universität Kaiserslautern.

[Poore and Trammell, 1996] Poore, J. H. and Trammell, C. J. (1996). Clean-
room Software Engineering: A Reader. NCC Blackwell, Oxford.

[Programming Systems Lab, 1999] Programming Systems Lab (1999). The
mozart programming system. University of the Saarland. http://www.mozart-
oz.org.

[Rao and Georgeff, 1995] Rao, A. S. and Georgeff, M. (1995). BDI Agents:
from theory to practice. In Proceedings of the First International Conference
on Multi-Agent Systems (ICMAS-95), pages 312–319, San Francisco, CA.

[Ratcliffe and Siddiqi, 1985] Ratcliffe, B. and Siddiqi, J. A. (1985). An empiri-
cal investigation into problem decomposition strategies used in program design.
International Journal of Man-Machine Studies, 22:77–90.

[Rational Software, 1999a] Rational Software (1999a). Goals of the UML.
http://www.rational.com.

Bibliography 277

[Rational Software, 1999b] Rational Software (1999b). Performace Engi-
neering: A Practical Approach to Performance Improvement. Whitepaper.
http://www.rational.com.

[Rawson, 1992] Rawson, S. (1992). Analysing Organisations. The Macmillon
press.

[Robinson, 1965] Robinson, J. (1965). A machine oriented logic based on the
resolution principle. Journal of ACM 12, 1:23–41.

[Rombach, 1994a] Rombach, H. D. (1994a). Vorlesungsscript Software Engineer-
ing I.

[Rombach, 1994b] Rombach, H. D. (1994b). Vorlesungsscript Software Engineer-
ing II.

[Rovatsos and Lind, 1999] Rovatsos, M. and Lind, J. (1999). Learning cooper-
ation in repeated games. In Proceedings of the IJCAI-99 Workshop on Agents
Learning About, From and With other Agents.

[Rovatsos and Lind, 2000] Rovatsos, M. and Lind, J. (2000). Hierarchical
common-sense interaction learning. In Proceedings of the Fourth International
Conference on MultiAgent Systems, Boston, MA, USA.

[Royce, 1970] Royce, W. W. (1970). Managing the development of large soft-
ware systems: Concepts and techniques. In WESCON Technical Papers, v. 14,
Los Angeles. WESCON. Reprinted in Proceedings of the Ninth International
Conference on Software Engineering, 1987, pp. 328–338.

[Rumbaugh et al., 1999] Rumbaugh, J., Jacobson, I., and Booch, G. (1999).
The Unified Modeling Language Reference Manual. Addision-Wesley.

[Russell and Norvig, 1995] Russell, S. and Norvig, P. (1995). Artificial Intelli-
gence: A Modern Approach. Prentice Hall.

[Russell and Wefald, 1991] Russell, S. J. and Wefald, E. H. (1991). Do the
Right Thing : Studies in Limited Rationality. MIT Press.

[Saunders et al., 1996] Saunders, T. F., Horowitz, B. M., and Mleziv, M. L.

(1996). A New Process for Acquiring Software Architecture. Mitre Corporation.
[Schillo et al., 1999] Schillo, M., Lind, J., Funk, P., Gerber, C., and Jung,

C. (1999). SIF - The Social Interaction Framework System Description and
User’s Guide to a Multi-Agent System Testbed. Technical Report TR-99-02,
DFKI GmbH.

[Searle, 1969] Searle, J. R. (1969). Speech Acts. Cambridge University Press.
[Shaw, 1995] Shaw, M. (1995). Patterns for Software Architectures. In Coplien,

J. and Schmidt, D., editors, Pattern Languages of Program Design, volume I.
[Shaw and Garlan, 1996] Shaw, M. and Garlan, D. (1996). Software Architec-

ture : Perspectives on an Emerging Discipline. Prentice Hall.
[Shiffrin, 1973] Shiffrin, R. M. (1973). Information persistence in short-term

memory. Journal of Eperimental Psychology, (100).
[Shoham, 1993] Shoham, Y. (1993). Agent-oriented programming. Artificial In-

telligence, 60(1):51–92.
[Siemens AG, 1997] Siemens AG (1997). Verfahren und Anordnung zur Ermit-

tlung einer Route von einem Startpunkt zu einem Zielpunkt. Deutsche Paten-
tanmeldung 197 46 417.3. Donald Steiner, Jürgen Lind, Alastair Burt and
Hartmut Dieterich.

[Sloman, 1996] Sloman, A. (1996). What sort of architecture is required for a
human-like agent? In Cognitive Modeling Workshop, AAAI96. Invited Talk.

[Smith, 1997] Smith, C. U. (1997). Performance Engineering for Software Archi-
tectures. In Proceedings of the Twenty-First Annual International Computer
Software and Applications Conference (COMPSAC’97). IEEE Comput. Soc.

278 Bibliography

[Smith, 1980] Smith, R. (1980). The contract net protocol: High-level commu-
nication and control in a distributed problem solver. IEEE Transactions on
Computers.

[Smolka, 1995] Smolka, G. (1995). The Oz programming model. In van

Leeuwen, J., editor, Computer Science Today, Lecture Notes in Computer
Science, vol. 1000, pages 324–343. Springer-Verlag, Berlin.

[Smullyan, 1968] Smullyan, R. (1968). First-Order Logic. Springer.
[Sneed, 2000] Sneed, H. (2000). Source animation as a means of program com-

prehension for object-oriented systems. In Proceedings of the 8th International
Workshop on Program Comprehension (IWPC2000). IEEE Computer Society
Press.

[So and Durfee, 1998] So, Y. and Durfee, E. H. (1998). Designing Organizations
for Computational Agents. In Simulating Organizations. MIT Press.

[Sommerville, 1995] Sommerville, I. (1995). Software Engineering. Addison-
Wesley, 5th edition.

[Spada, 1990] Spada, H., editor (1990). Allgemeine Psychologie. Verlag Hans
Huber, Bern.

[Stallman and Free Software Foundation, 1999] Stallman, R. M. and Free

Software Foundation (1999). Emacs. http://www.gnu.org.
[Steiner, 1992] Steiner, D. (1992). MEKKA: Eine Entwicklungsumgebung zur

Konstruktion kooperativer Anwendungen. In Müller, J. and Steiner, D.,
editors, Kooperierende Agenten, number D-92-24 in DFKi Document Series,
pages 17–21. DFKI, Saarbrücken.

[Stroustrup, 1987] Stroustrup, B. (1987). The C++ Programming Language.
Addison-Wesley, Massachusetts.

[Sun Microsystems, 1999] Sun Microsystems (1999). The Java Programming
System. http://java.sun.com.

[Sun Microsystems, 2000] Sun Microsystems (2000). Java Beans.
http://java.sun.com/beans.

[Sundermeyer, 1993] Sundermeyer, K. (1993). Modellierung von agentensyste-
men. In Verteilte Künstliche Intelligenz. BI Wissenschaftsverlag.

[Tanenbaum, 1988] Tanenbaum, A. S., editor (1988). Computer Networks. Pren-
tice Hall, 2nd edition.

[Tel, 1994] Tel, G. (1994). Introduction to Distributed Algorithms. Cambridge
University Press.

[The DSDM Consortium, 1998] The DSDM Consortium (1998). DSDM method
overview. http://www.dsdm.org/.

[The International Organization for Standardization, 1997] The International

Organization for Standardization (1997). IS-9074 (Information processing
systems/Open systems interconnection): Estelle — a formal description tech-
nique based on an extended state transition model.

[The International Organization for Standardization, 1998] The International

Organization for Standardization (1998). Iso-35.100.05 multilayer appli-
cation.

[The VRML Consortium, 1997] The VRML Consortium (1997). The Virtual Re-
ality Modeling Language, ISO/IEC DIS 14772-1. unknown.

[Turing, 1937] Turing, A. M. (1937). On computable numbers, with an appli-
cation to the entscheidungsproblem. Proceedings of the London Mathematical
Society, 2(42).

[Visser, 1987] Visser, W. (1987). Strategies in programming programmable con-
trollers: a field study on a professional programmer. In Olson, G., S.Sheppard,

and Soloway, E., editors, Empirical Studies of Programmers: Second Work-
shop, Norwood, NJ. Ablex.

Bibliography 279

[Visser, 1990] Visser, W. (1990). More or less following a plan during design: Op-
portunistic deviations in specification. International Journal of Man-machine
studies.

[Voges and Mierau, 1997] Voges, W. and Mierau, U. (1997). Train Coupling &
-Sharing. In Proceedings of the World Congress of Railway Research (WCRR),
Florence; Italy.

[Wall et al., 1996] Wall, L., Schwartz, R. L., and Christiansen, T. (1996).
Programming Perl. O’Reilly & Associates Inc., 2nd edition.

[Weiss, 1999] Weiss, G., editor (1999). Multiagent Systems - A Modern Approach
to Distributed Artificial Intelligence. MIT Press.

[Wellman, 1996] Wellman, M. P. (1996). Market-Oriented Programming: Some
Early Lessons. In Clearwater, S. H., editor, Market-based Control. World
Scientific.

[Werner, 1988] Werner, E. (1988). A formal computational semantics and prag-
matics of speech acts. In Proceedings COLING–88, pages 744–749.

[Werner, 1989] Werner, E. (1989). Cooperating agents: A unified theory of com-
munication and social structure. In Gasser, L. and Huhns, M. N., editors,
Distributed Artificial Intelligence, volume II.

[Windhoff AG, 1996] Windhoff AG (1996). CargoSprinter.
http://www.windhoff.de.

[Wirth, 1995] Wirth, N. (1995). A plea for lean software. IEEE Computer,
28(2):64–68.

[Wisser and Hoc, 1990] Wisser, W. and Hoc, J.-M. (1990). Expert software
design strategies. In Psychology of Programming. Academic Press Ltd., London.

[Wooldridge, 1997] Wooldridge, M. (1997). Agent-based software engineering.
IEE Proceedings on Software Engineering, 144(1):26–37.

[Wooldridge and Jennings, 1995] Wooldridge, M. and Jennings, N. R. (1995).
Intelligent agents: Theory and practice. The Knowledge Engineering Review,
10(2):115–152.

[Wooldridge et al., 2000] Wooldridge, M., Jennings, N. R., and Kinny, D.

(2000). The gaia methodology for agent-oriented analysis and design. Journal
of Autonomous Agents and Multi-Agent Systems. to appear.

[Wooldridge and Jennings, 1998] Wooldridge, M. J. and Jennings, N. R.

(1998). Pitfalls of agent-oriented development. In Proceedings 2nd International
Conference on Autonomous Agents (Agents-98), pages 385–391, Minneapolis.

[Zappa, 1979] Zappa, F. (1979). Joe’s garage. Munchkin Music.
[Zemanek, 1985] Zemanek, H. (1985). Formal definition the hard way. In

Neuhold, E. J. and Chroust, G., editors, Formal Models in Programming.
Elsevier, Amsterdam.

Glossary

Agent An autonomous, pro-active, reactive entity with social abilities to
interact with other entities.

Agent Architecture A structural model of the components that constitute
an agent as well as the interconnections of these components together
with a computational model that implements the basic capabilities of
the agent.

Aspect-Oriented Programming A design technique that conceptualizes
the idea of collecting several cross-cutting aspects of the software design
in a single abstraction.

Deployment The process that covers all activities that are performed after
a software system has been developed.

Environment Either the organizational or the runtime context of the target
system.

Experience Factory A conceptual framework that supports systematic
learning within an organization.

Knowbble A conceptual abstraction that can represent design entities such
as design decisions or physical entities such as components, devices or
code fragments.

Knowbble aggregation The process of grouping several knwobbles into a
single abstraction that represents the entire group.

Knowbble family The transitive refinement closure of a collection of
knowbbles.

Knowbble Map A visualization of knowbble families and/or views.
Knowbble Refinement The process of decomposing a single knowbble into

several other knowbbles and therewith increasing the degree of detail of
the model.

Implementation The manifestation of a design into the code of a particular
programming language.

Interaction The mutual adaption of the behavior of agents.
Iterative View Engineering A software development model that com-

bines Round-trip Engineering and Iterative Refinement.
Multiagent System Systems with a variable number of interacting, au-

tonomous entities that communicate with each other using flexible, com-
plex protocols.

282 Glossary

Notation Is a language for communicating decisions that are not obvious
or cannot be inferred from the code itself, that provides rich enough se-
mantics sufficient to capture all important strategic and tactical decisions
and offers a concrete form for humans to reason about decisions.

Performance Engineering A method to identify and reduce or eliminate
performance problems during the software development cycle and the
code has been designed and developed.

Process Model A formalization of the software design and implementation
activities and of the products that are connected with these activities.

Product Model A representation of the characteristic features of a class of
documents that constitute the description of a software system.

PTA A test domain for the FIPA agent standard and for multiagent system
design in general.

Role A logical grouping of functions that obeys the physical constraints of
the operational environment of the target system.

Round-trip Engineering A software engineering process model that com-
bines constructive code generation with analytic model refinement.

Shared Knowbble A knowbble that belongs to several views at the same
time and that represents a dependency between these views.

Society A structured set of agents that agree on a minimal set of acceptable
behaviors.

Social system A society that implements a closed functional context with
respect to a common goal.

Software Development Method A combination of a notation, whose pur-
pose is to provide a common means of expressing strategic and tactical
decisions, ultimately manifesting themselves in a variety of artifacts and a
process, responsible for specifying how and when certain artifacts should
be produced.

System Architecture The fundamental structural attributes of a software
system.

TCS A novel approach in freight transport scheduling on the railway.
Teamwork Approach A programming scheme for distributed search in

large, unstructured search spaces.
UML A general purpose description language for software blueprints.
View A set of conceptually linked knowbbles that forms a projection of the

complete model onto a particular aspect.

Index

abstract data type (ADT) 31
abstraction 48
activity
– atomic 139
– joint 139
activity diagram 151
adaption
– mutual 16
agent
– architecture 13, 14, 184
– generic system architecture 14
– intelligent 9
– reactive 184
– social 17
– strong notion of agency 23
– systems of ∼s 15
– theory 23
– very weak notion of agency 24
– weak notion of agency 23
agent architecture
– Belief-Desire-Intention (BDI) 13
agent management 220
agent management system 15, 27, 181
agent-based computing 19
agentUML 150
architecture
– agent 184
– generic application 14
– software 174
architecture view 174
artificial life 20
asynchronous message 128
autonomy 30

blackboard 166
bottleneck 196
broadcast 127, 165

case-based reasoning 92
change cost 73
chunking 37
client-server protocol 157

clustering 171
– dynamic 171
– static 173
code reading 64
cognitive psychology 36
cognitive unit 36
coherence 145
cohesion 174
communication
– asynchronous 165
– synchronous 165
communication channel 152
communication model 181
communication platform 128
competition 146
computational ecosystems 20
conflict resolution 16
contract-net 156
control flow space 152
coordination 16
coupling 174

deployment 201
design idiom 175
design task 35
development strategies 46
– bottom-up 47
– breath-first 47
– depth-first 48
– opportunistic 48
– top-down 47
distributed systems 19

effector 129
emacs 203
English auction 149
environment view 125
error detection 195
error recovery 195
Estelle 150, 162
exception 194
experience factory 92

284 Index

expert 208
extensibility 138
eXtreme Programming 73

FIPA 147, 150
formal verification 64
formalization 132

goal 130, 132
grouping 48
GSM 128

holonic agent society 169
human-computer interaction 35

intent layer 145
interaction 16
– direct 147
– indirect 147
– mode 147
interaction view 144
InteRRaP 187
– behavior based layer 187
– local planning layer 187
– social planning layer 187
iteration 114
– concurrent-repetitive 115
– sequential 114
– sequential-repetitive 114
iterative view engineering 114

JAMagents 28
Java 28
Java beans 28

knowbble 99–101
– aggregation 101
– family 100
– map 100
– refinement 101
KQML 148

layering 48
learning 146, 184
LEDA 203
Linux 129
literate programming 50

market-oriented programming 146
Massive 97, 117, 119
Massive views
– architecture 112, 174
– environment 110, 125
– interaction 111, 144

– role 111, 138
– society 112, 167
– system 112, 190
– task 111, 130
mediation 17
memory
– long-term 36
– short term 37
mental model 38, 42
message passing 165
mobility 221
modeling 48
modularization 48
Mozart 128
multicast 165

negotiation 17
non-separable problem space 145

OMG 150
ontology 148, 221, 251
optimization problem 133
organizational context 125
organizational model 52
Oz 203

Perceive-Reason-Act cycle 9
performance 196
– cognitive 37
performative 148
perspective
– developers 125
– system 129
portability 138
process 52
process model 52, 58
– Booch’s model 70
– – macro level 70
– – micro level 72
– cleanroom 63
– DSDM 68
– eXtreme programming 73
– iterative enhancement 60
– minimal 54, 122
– prototyping 64
– – horizontal prototype 65
– – vertical prototype 65
– round-trip engineering 68
– – forward engineering 68
– – reverse engineering 68
– spiral model 66
– V-model 53, 60
– waterfall 58
product 51, 53

Index 285

product model 53
product model 51
– generic 54
programming language 128
programming model
– distributed 128
– pseudo-parallel 128
– sequential 128
programming paradigm 21
– declarative 30
– functional 30
– imperative 29
– object-oriented
– – class 23
– – inheritance 23
– – message 23
– – object 23
– – object architecture 26
– – object management system 26
protocol diagram 150
protocol description language 149
protocol execution unit 182
protocol layer 148
Protoz 162
pseudo-language 42

QIP 92
quality assurance 91
quality management 91
quality standards 92

rapid application development 64, 68
re-use 49
refactoring 76
referee 208
requirements
– analysis 130
– functional 131
– nonfunctional 138
resource
– cognitive 42
– knowledge 42
– technical 43
role 12–13, 149
– assignment 144
– conflict 12
– definition 139
– delimitation
– – bottom-up 140
– – hybrid strategy 140
– – top-down 139
– interpreter 14
– multiplicity 12

role assignment 144
– dynamic 144
– static 144
role delimitation 139
role view 138
runtime environment 127

scalability 147
scenario 130
schema 38
– application domain 38
– discourse 38
– programming 38
security 138
sensor 129
separable 145
separation of concern 54
SIF 28
simulated trading 156, 159
simulation 49
social simulation 20
social system 167
society 18
– closed 168
– dynamic 169
– hierarchical 168
– holonic 169
– open 168
– semi-open 168
– static 169
– structure 168
– type 168
society flat 168
society model
– descriptive 18
– prescriptive 18
society view 167
sociogram 18
software architecture 174
Software engineering
– agent-oriented 21
software maintenence 36
specialist 208
stability 138
structure 18
structured analysis 132
structured programming 47
structuring 48
– dynamic 48
– static 48
supervisor 208
Swarm 28, 253
synchronization point 152
system

286 Index

– social 19
system view 190
systematic learning 91

task decomposition 145
task tree 132
task view 130
TCP/IP 128
TCS 122
teamwork 205
Teamwork Library 205
TQM 92

UML 55, 150
– diagrams 56
– goals 55

– relationships 56
– things 56
use case 71
use case analysis 71, 130
user interface 190
utilitarian reasoning 184

verbalization 49
view 101
view-oriented analysis 106

walk-through 64
workflow 134

ZEUS 28, 190, 251

	front-matter
	Lecture Notes in Artificial Intelligence
	Springer
	Iterative Software Engineering for Multiagent Systems
	Foreword
	Contents
	Foreword
	List of Figures
	List of Process Models
	Introduction
	Agents, Multiagent Systems and Software Engineering
	Basic Concepts in Software Engineering
	The Conceptual Framework of Massive
	Massive Views
	Further Case Studies
	Conclusion
	Toolkits for Agent-Based Applications
	Basic Problem Solving Capabilities of TCS Agents
	Protoz Specification of the Contract-Net Protocol

	List of Figures
	List of Process Models

	fulltext
	Introduction
	Acknowledgments

	fulltext2
	2. Agents, Multiagent Systems and Software Engineering
	2.1 Intelligent Agents
	2.1.1 What’s an Agent, anyway?
	2.1.2 Roles
	2.1.3 Architectures
	2.1.4 Agents, Roles and Architectures

	2.2 Systems of Agents
	2.2.1 Interaction
	2.2.2 The Social Dimension

	2.3 Related Fields in Computer Science
	2.4 Agent-Oriented Software Engineering
	2.4.1 Aspects of Programming Paradigms
	2.4.2 A Historic Perspective
	2.4.3 The Bottom Line
	2.4.4 Where Next?

	2.5 Summary

	fulltext3
	3. Basic Concepts in Software Engineering
	3.1 Cognitive Aspects of Software Engineering
	3.1.1 Basic Human Information Processing
	3.1.2 Software Engineering as a General Design Task
	3.1.3 Designs and Models
	3.1.4 A General Model of Engineering
	3.1.5 The Basic Engineering Cycle
	3.1.6 Basic Skills in Software Engineering

	3.2 Requirements for Software Engineering Support
	3.3 A General Model of Software Engineering
	3.4 Software Engineering Product Models
	3.4.1 A Generic Product Model
	3.4.2 Software Blueprints: The Unified Modeling Language

	3.5 Software Engineering Process Models
	3.5.1 Classical Process Models
	3.5.2 Novel Trends in Software Engineering
	3.5.3 Development Methods for Multiagent Systems
	3.5.4 D iscussion

	3.6 Quality Management and Systematic Learning
	3.6.1 The Quality Improvement Paradigm
	3.6.2 Experience Factory

	3.7 Summary

	fulltext4
	4. The Conceptual Framework of Massive
	4.1 The Foundations of Massive
	4.2 Knowbbles
	4.3 Views
	4.4 Iterative View Engineering
	4.5 Putting It All Together
	4.6 Summary

	fulltext5
	5. Massive Views
	5.1 A Brief Introduction to Train Coupling- and Sharing (TCS)
	5.2 Environment View
	5.2.1 Developers Perspective
	5.2.2 Systems Perspective

	5.3 Task View
	5.3.1 Use Case Analysis
	5.3.2 Functional Requirements
	5.3.3 Nonfunctional Requirements

	5.4 Role View
	5.4.1 Role Definition
	5.4.2 Role Assignment

	5.5 Interaction View
	5.5.1 Intent Layer
	5.5.2 Protocol Layer
	5.5.3 Transport Layer

	5.6 Society View
	5.6.1 Characterization of Social Systems
	5.6.2 Designing Social Systems

	5.7 Architecture View
	5.7.1 System Architecture
	5.7.2 The Architectural Feature Space
	5.7.3 Agent Architecture

	5.8 System View
	5.8.1 User Interface Design
	5.8.2 Exception Handling
	5.8.3 Performance Engineering
	5.8.4 Deployment

	5.9 Summary

	fulltext6
	6. Further Case Studies
	6.1 The Teamwork Library
	6.1.1 Environment View
	6.1.2 Task View
	6.1.3 Role View
	6.1.4 Interaction View
	6.1.5 Society View
	6.1.6 Architecture View
	6.1.7 System View

	6.2 Personal Travel Assistant: Intermodal Route Planning
	6.2.1 Environment View
	6.2.2 Task View
	6.2.3 Role View
	6.2.4 Interaction View
	6.2.5 Society View
	6.2.6 Architecture View
	6.2.7 System View

	6.3 Summary

	fulltext7
	7. Conclusion

	fulltext8
	A. Toolkits for Agent-Based Applications
	A.1 SIF
	A.2 ZEUS
	A.3 Swarm
	A.4 Summary

	fulltext9
	B. Basic Problem Solving Capabilities of TCS Agents
	B.1 Planing Algorithm for a Single Task
	B.2 Plan Integration Operator
	B.3 Decision Functions
	B.4 Plan Execution Simulation

	fulltext10
	C. Protoz Specification of the Contract-Net Protocol

	back-matter
	Index
	01.pdf
	Lecture Notes in Artificial Intelligence
	Springer
	Iterative Software Engineering for Multiagent Systems
	Foreword
	Contents
	Foreword
	List of Figures
	List of Process Models
	Introduction
	Agents, Multiagent Systems and Software Engineering
	Basic Concepts in Software Engineering
	The Conceptual Framework of Massive
	Massive Views
	Further Case Studies
	Conclusion
	Toolkits for Agent-Based Applications
	Basic Problem Solving Capabilities of TCS Agents
	Protoz Specification of the Contract-Net Protocol

	List of Figures
	List of Process Models
	Introduction
	Acknowledgments

	2. Agents, Multiagent Systems and Software Engineering
	2.1 Intelligent Agents
	2.1.1 What’s an Agent, anyway?
	2.1.2 Roles
	2.1.3 Architectures
	2.1.4 Agents, Roles and Architectures

	2.2 Systems of Agents
	2.2.1 Interaction
	2.2.2 The Social Dimension

	2.3 Related Fields in Computer Science
	2.4 Agent-Oriented Software Engineering
	2.4.1 Aspects of Programming Paradigms
	2.4.2 A Historic Perspective
	2.4.3 The Bottom Line
	2.4.4 Where Next?

	2.5 Summary

	3. Basic Concepts in Software Engineering
	3.1 Cognitive Aspects of Software Engineering
	3.1.1 Basic Human Information Processing
	3.1.2 Software Engineering as a General Design Task
	3.1.3 Designs and Models
	3.1.4 A General Model of Engineering
	3.1.5 The Basic Engineering Cycle
	3.1.6 Basic Skills in Software Engineering

	3.2 Requirements for Software Engineering Support
	3.3 A General Model of Software Engineering
	3.4 Software Engineering Product Models
	3.4.1 A Generic Product Model
	3.4.2 Software Blueprints: The Unified Modeling Language

	3.5 Software Engineering Process Models
	3.5.1 Classical Process Models
	3.5.2 Novel Trends in Software Engineering
	3.5.3 Development Methods for Multiagent Systems
	3.5.4 D iscussion

	3.6 Quality Management and Systematic Learning
	3.6.1 The Quality Improvement Paradigm
	3.6.2 Experience Factory

	3.7 Summary

	4. The Conceptual Framework of Massive
	4.1 The Foundations of Massive
	4.2 Knowbbles
	4.3 Views
	4.4 Iterative View Engineering
	4.5 Putting It All Together
	4.6 Summary

	5. Massive Views
	5.1 A Brief Introduction to Train Coupling- and Sharing (TCS)
	5.2 Environment View
	5.2.1 Developers Perspective
	5.2.2 Systems Perspective

	5.3 Task View
	5.3.1 Use Case Analysis
	5.3.2 Functional Requirements
	5.3.3 Nonfunctional Requirements

	5.4 Role View
	5.4.1 Role Definition
	5.4.2 Role Assignment

	5.5 Interaction View
	5.5.1 Intent Layer
	5.5.2 Protocol Layer
	5.5.3 Transport Layer

	5.6 Society View
	5.6.1 Characterization of Social Systems
	5.6.2 Designing Social Systems

	5.7 Architecture View
	5.7.1 System Architecture
	5.7.2 The Architectural Feature Space
	5.7.3 Agent Architecture

	5.8 System View
	5.8.1 User Interface Design
	5.8.2 Exception Handling
	5.8.3 Performance Engineering
	5.8.4 Deployment

	5.9 Summary

	6. Further Case Studies
	6.1 The Teamwork Library
	6.1.1 Environment View
	6.1.2 Task View
	6.1.3 Role View
	6.1.4 Interaction View
	6.1.5 Society View
	6.1.6 Architecture View
	6.1.7 System View

	6.2 Personal Travel Assistant: Intermodal Route Planning
	6.2.1 Environment View
	6.2.2 Task View
	6.2.3 Role View
	6.2.4 Interaction View
	6.2.5 Society View
	6.2.6 Architecture View
	6.2.7 System View

	6.3 Summary

	7. Conclusion
	A. Toolkits for Agent-Based Applications
	A.1 SIF
	A.2 ZEUS
	A.3 Swarm
	A.4 Summary

	B. Basic Problem Solving Capabilities of TCS Agents
	B.1 Planing Algorithm for a Single Task
	B.2 Plan Integration Operator
	B.3 Decision Functions
	B.4 Plan Execution Simulation

	C. Protoz Specification of the Contract-Net Protocol
	Bibliography
	Glossary
	Index

